
ONIP-1 Better language model support

Status

Current State: Under Discussion

Discussion Thread: https://lists.apache.org/thread.html/50ac99671c0343980053e7ba3faa3e4c2624b08b1f033617f222c33e@%3Cdev.opennlp.
apache.org%3E

JIRA: OPENNLP-1183

Motivation: Language models can be useful in typical NLP tasks like spellchecking, suggestions (and NLG in general) but also as building blocks
in other areas like in Machine Translation or Information Retrieval. Current API, despite some deprecated methods which might LanguageModel
be removed in future releases, looks ok. However the only existing implementation has some outstanding limitations with NGramLanguageModel
respect to :

memory consumption - each ngram is stored as a _Map<StringList,Integer>_ (each StringList being an ngram and the int being the
count of each ngram in the dictionary). Although that's better than using as keys, it still consumes quite some memory when String[]
compared to other libraries (e.g. KenLM). Also there is no caching or precomputing of probabilities, so probability estimation can be very
slow at runtime.
space consumption - currently extends from and inherits its serializing capabilities as an XML, that NGramLanguageModel NGramModel
is very expensive when compared to Model serialisation algorithms for other OpenNLP components and LM libraries and makes it
uncomfortable to use with very large dictionaries.
accuracy / perplexity - currently estimates probability using algorithm, (combinations of) other NGramLanguageModel Stupid Backoff
alternatives might work better (e.g. Kneser Ney).

Proposed Changes: Here're the proposed changes:
create a new implementation of API which extends from and where we can better handle model serialization LanguageModel BaseModel
algorithm
use hashing techniques to store ngrams instead of the current Map<StringList, Integer>
evaluate techniques for caching / prefetching of probabilities
implement Kneser-Ney smoothing and make it possible to plug new techniques for probability estimation

New or Changed Public Interfaces: no backward compatibility concerns should arise given that would be a new implementation of an existing
API, removing the currently deprecated methods in LM API is a concern that should be handled separately from this improvement

Migration Plan and Compatibility: see above

Rejected Alternatives: changing the current implementation would be possible but would pose backward compatibility NGramLanguageModel
issues, additionally by keeping the old implementation we can measure the improvements by comparing space / runtime storage efficiency and
accuracy / perplexity between the current and the new implementation more easily.

Useful resources: https://web.stanford.edu/~jurafsky/slp3/4.pdf

https://lists.apache.org/thread.html/50ac99671c0343980053e7ba3faa3e4c2624b08b1f033617f222c33e@%3Cdev.opennlp.apache.org%3E
https://lists.apache.org/thread.html/50ac99671c0343980053e7ba3faa3e4c2624b08b1f033617f222c33e@%3Cdev.opennlp.apache.org%3E
https://issues.apache.org/jira/browse/OPENNLP-1183
https://web.stanford.edu/~jurafsky/slp3/4.pdf

	ONIP-1 Better language model support

