KIP 269 Substitution Within Configuration Values

Status

Motivation

Public Interfaces

Proposed Changes

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status

Current state: Under Discussion
Discussion thread: here
JIRA: KAFKA-6664

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

The JAAS configuration for various SASL mechanisms would benefit from the ability to substitute values based on delimited text. For example, clients that
connect via SASL/PLAIN (username/password) currently must specify the password directly in the configuration, like this:

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required
username="kafkaclientl" \
password="kafkaclientl-secret";

It would be a significant improvement both in security and flexibility if instead the password could be retrieved from elsewhere. For example:

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required
username="kafkaclientl" \
password="$[file=/path/to/secrets/kafkaclientl-secret]”;

KIP 255 (OAuth Authentication via SASL/IOAUTHBEARER) proposes adding a SASL mechanism that, due to the flexible nature of the OAuth 2 framework,
will require significant configuration that cannot be predicted in advance; the ability to substitute values into the OAuth 2 configuration is a necessity. (In
fact, adding the ability to substitute values into a JASS configuration originated with that KIP, but based on discussion the functionality was split out into
this separate KIP when the general applicability was recognized.)

This KIP proposes adding support for substitution within client JAAS configuration values for PLAIN and SCRAM-related SASL mechanisms in a
backwards-compatible manner and making the functionality available to other existing (or future) configuration contexts where it is deemed appropriate.

Public Interfaces

Substitutablevalues «interfaces

«constructorsSubstitutableValues(UnderlyingValues) : SubstitutableValues UnderlyingValues
«constructorsSubstitutableValues(String, UnderlyingValues) : SubstitutableValues getiString) : Object
typeDefinitionKeyPrefix() : String

underlyingvalues() : UnderlyingValues

substitutionResults() : Map<String, RedactableObject>

getSubstitutionResult(String, boolean) : RedactableObject {exceptions =I0Exception}

RedactableObject

invokes b «constructorsRedactableObject (Object) : RedactableObject
«constructorsRedactableObject(Object, boolean) : RedactableOhbject
winterfaces object() : Object
SubstituterType isRedacted() : boolean

doSubstitution(String, List<String>, String, Substitutablevalues) : RedactableObject {exceptions=I0Exception} :iﬁ:t”e-dgtenx;g: String

P isEmpty() : boolean
isBlank(: boolean

]
: redactedVersion() : RedactableObject
|

SubstituterTypeHelper
retrieveResult(String, String, boolean, Set<String>, Map <String, String>, SubstitutableValues) : RedactableObject {exceptions =/OException]

The public interface in terms of code is depicted in the above UML diagram. A set of 4 built-in substitution types will also be provided as described
below. The implementations of the built-in substitution types are not part of the public code; rather, the way the substitutions are invoked within a JASS
configuration will be the public interface to their functionality.

https://mail-archives.apache.org/mod_mbox/kafka-dev/201803.mbox/%3CCAMLDoAMMHSJjC0rohpKYsr-d1CxPr%2Bh%2B9t9Cnu7dV%2BWUcGX9ow%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-6664
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=75968876

Here are the classes/interfaces as depicted in the above UML diagram. Note the following:

®* The Under | yi ngVal ues interface defines the map-like interface that the input to Subst i t ut abl eVal ues must implement. When a reference
is made from one underlyng value to another — via the def aul t Key=<Key> or f r onVal ueOf Key modifiers as described later — the reference is
resolved within the underlying values provided to the Subst i t ut abl eVal uesinstance.

® Once an instance of Subst i t ut abl eVal ues retrieves an underlying value and its calculated value -- whether different from the raw underlying
value due to a substitution or not -- is determined, the instance of Subst i t ut abl eVal ues will not retrieve the underlying value again; the
calculated value will be used if it is referred to. This means if the underlying values are expected to change then to see those changes a
new instance of Subst i t ut abl eVal ues must be allocated.

® A parsing error within recognized delimiters results in the delimiters and intervening text being passed through unchanged. This is to help prevent
accidental substituion occuring in existing passwords (for example). See Compatibility below.

org.apache.kafka.common.security.substitutions.UnderlyingValues

package org. apache. kaf ka. conmon. security. substitutions;

| **

* The map-like interface that the input to {@ink Substitutabl eval ues} nust
* inplenent.
*/

public interface UnderlyingVal ues {

| **

* Return the value associated with the given key, if any, otherw se null

* @ar am key

* the mandatory key

* @eturn the value associated with the given key, if any, otherw se null
*/

bj ect get(String key);

org.apache.kafka.common.security.substitutions.SubstitutableValues

package org. apache. kaf ka. conmon. security. substitutions;

/**
* Adds support for substitution within the values of an instance of

* {@ink UnderlyingVal ues}. Substitution is acconplished via delinmted text
* within a value of the followi ng form

* <pre>

* & t; OPENI NG_DELI M TER> ; & t; TYPE> ; & t; OPTI ONAL_MODI FI ERS> ; =& t; OPTI ONAL_I DENTI FI ER> ; &l t ;
CLOSI NG_DELI M TER> ;

* </ pre>

* \Were the above el enents are defined as foll ows:
* <pre>

* OPENING DELIM TER $[, S$[[, S[[[. S[[[[., or $
* CLOSING DELIMTER 1, 1], 111 1111 (nunber of brackets nust match)
* TYPE: everything up to (but not including) the first punctuation character

* OPTI ONAL_MODI FI ERS: the optional section imediately after the TYPE, starting with any

* punctuation character except for the equal sign (=), and ending

* with the sane punctuation character followed i mediately by an

* equal sign. The sane punctuation character delimts individual

* nodi fiers, which cone in tw flavors: flags, which do not contain
* an equal sign, and nane=val ue argunents, which do.

* OPTI ONAL_I DENTI FI ER: the optional section immediately after any nodifiers and the equal
* sign (=).
* </ pre>

* For exanpl e:

<pre>

$[envVar =THE_ENV_VAR]

$[envVar/ not Bl ank/ r edact / =THE_ENV_VAR]

$[envVar/ def aul t Val ue = theDef aul t Val ue/ =THE_ENV_VAR]
$[envVar/ def aul t Key = t heDef aul t Key/ =THE_ENV_VAR]
$[file|redact| notBl ank| =/the/path/to/the/file]

</ pre>
Once an underlying value is retrieved and its cal cul ated val ue -- whether
different fromthe raw underlying value due to a substitution or not -- is

determned, this instance will not retrieve the underlying value again; the
calculated value will be used if it is referred to. This neans if the
underl ying val ues are expected to change then to see those changes a new
instance of this class nust be allocated.

<p>

Working left to right, once the deliniters are defined for a value (for
exanmple, {@ode $[} and {@ode]}), only those deliniters are recognized for
the rest of that value (and they are always recogni zed as neani ng
substitution for the rest of that value). A special "enpty" substitution does
not hi ng except, when it appears to the left of every other occurrence of
matching delimters, it serves to force the delinmter for that value to the
one indicated. For exanple, to force the delimter to {@ode $[[} and
{@ode 1]} (and prevent {@ode $[} and {@ode]} from causing substitution)
for a val ue:

<pre>
soneKey = "$[[]] These $[and] delimiters do not cause substitution"
</ pre>

The following built-in substitution types are supported, though it is
straightforward to add others (see bel ow):

{@ode envVar}: substitute an environment variable, typically indicated
by the identifier

{@ode sysProp}: substitute a systemproperty, typically indicated by the
identifier

{@ode file}: substitute the contents of a file, typically indicated by
the identifier

{@ode keyVal ue}: substitute the contents of another key's val ue,
typically indicated by the identifier (and that key's value has substitution
perforned on it if necessary)

The built-in substitution types support the follow ng flags, which are
trimed and may be redundantly specified:

{@ode redact}: prevent values from being | ogged

{@ode notEnpty}: the value nust not be empty</Ili>

{@ode notBl ank}: the value nust not be blank (i.e. consisting only of
whi tespace); inplies {@ode notEnmpty}.</1i>

{@ode fronVal ueCf Key}: provides a level of indirection so that the
identifier, instead of being used directly (i.e. read the indicated file, or
the indicated environnent variable), identifies another key whose value is
used as the identifier instead. This allows, for exanple, the filenang,
system property nane, etc. to potentially be generated fromnultiple
substitutions concatenated together.

The built-in substitution types support the follow ng arguments, whose nanes
are trimed but whose values are not; it is an error to specify the sane
nanmed argunent nultiple times (even if the values are identical):

{ @ode defaul t Val ue=<val ue>}: substitute the given literal value if the
substitution cannot otherw se be nade (either because the identifier

i ndi cates sonething that does not exist or the determned val ue was

di sal | oned because it was enpty or blank). The substituted default val ue nust
satisfy any {@ode notBl ank} or {@ode notEnpty} nodifiers that act as
constraints, otherwise it is an error.

{ @ode defaul t Key=<key>}: substitute the value associated with the
indicated key if the substitution cannot otherw se be nade (either because
the identifier indicates sonething that does not exist or the determ ned

* val ue was disallowed because it was enpty or blank). The value that is

* ultimately substituted nust satisfy any { @ode not Bl ank} or {@ode not Enpty}
* nodifiers that act as constraints, otherwise it is an error.

*

* To add new substitutions beyond the built-in ones mentioned above sinply
* define a key/value pair of the following form

* <pre>
* [optional TypeDefinitionKeyPrefix]& t;type> SubstituterType = "fully.qualified.class.nane"
* </ pre>

* For exanpl e:

* <pre>
* fooSubstituterType = "org. exanpl e. FooSubsti tuter Type"
* </ pre>

* The indicated class nust inplement {@ink SubstituterType}, and you can
* invoke the substitution in a value like this:

* <pre>
* $[fool/ optional /nmodi fiers/=optional Val ue]
* </ pre>

* The type definition prefix is defined at construction time and may be enpty.

* A parsing error within recognized delimters results in the delimters and
* the intervening text that could not be parsed being left alone. For exanple,
* the following text woul d be passed through unchanged because the delimted
* text cannot be parsed as a valid substitution request:

* {@ode gqw$[asd_4Q] uH6}.

* @ee SubstituterType
* @ee SubstituterTypeHel per
*/
public class SubstitutableVal ues {
/**
* Constructor where the type definition key prefix is enpty

*

* @aram under|yi ngMap

* the mandatory underlying map. It is not copied, so it should be
* immutable. Results are unspecified if it is nutated in any manner.
*/
public Substitutabl eval ues(Underl yi ngVal ues underlyi ngVal ues) {
this("", underlyingVal ues);
}
/**

* Constructor with the given type definition key prefix
*

* @aram typeDefinitionKeyPrefix

* the mandatory (but possibly enpty) type definition key prefix

* @aram under | yi ngVap

* the mandatory underlying map. It is not copied, so it should be

* immutable. Results are unspecified if it is nutated in any manner.

*/

public Substitutabl eval ues(String typeDefinitionKeyPrefix, UnderlyingVal ues underlyingVal ues) {
Il etc...

/**

* Return the always non-null (but possibly enpty) type definition key prefix
*
* @eturn the always non-null (but possibly enpty) type definition key prefix
*/
public String typeDefinitionKeyPrefix() {
return typeDefinitionKeyPrefix;
}

| **

* Return the underlying val ues provided during construction
*
* @eturn the underlying values provided during construction
*/
public UnderlyingVal ues underlyi ngVal ues() {

return underlyingVal ues

* Return an unnodifiable map identifying which keys have been processed for

* substitution and the corresponding result (if any). A key is guaranteed to

* have been processed for substitution and its nane will appear as a key in the
* returned map only after {@ink #getSubstituti onResult(String)} has been

* invoked for that key either directly or indirectly because sone other key's

* substitution result depends on the substitution result of the key.

* @eturn an unnodi fiable nmap identifying which keys have been processed for

* substitution and the corresponding result (if any)

*/

public Map<String, Redactabl eCbject> substitutionResults() {
Il etc..

}

/*-k

* Perform substitution if necessary and return the resulting value for the
* given key

* @aram key

* the mandatory requested key
* @aram requiredToExi st
* if true then the requested key is required to exi st
* @eturn the given key's substitution result, after any required substitution
* is applied, or null if the key does not exist and it was not required
* to exist
* @hrows | CException
* if a required substitution cannot be performed, including if the
* given (or any other) required key does not exist
*/
publ i ¢ Redact abl eCbj ect get SubstitutionResult(String key, boolean requiredToExist) throws | CException {
Il etc..
}

Il etc..

org.apache.kafka.common.security.substitutions.SubstituterType

package org. apache. kaf ka. conmon. security. substitutions;

/**
* The single-nethod interface that pluggable substituter types nust inplenent.
*/
public interface SubstituterType {
/**
* Performthe substitution of the given type using the given nodifiers and
* val ue on the given options

*

* @aramtype

* the (always non-null) type of substitution to perform

* @aramnodifiers

* the (always non-null but potentially enpty) nodifiers to apply, if
* any. They are presented exactly as they appear in the

* configuration, with no whitespace trinmmng applied.

* @aramidentifier

* the always non-null (but potentially enpty) identifier, whichis

* interpreted in the context of the substitution of the indicated

* type. For exanple, it may indicate an environnent variable name, a
* filenane, etc.

* @ar am substi t ut abl eVal ues

* the values and their current substitution state

* @eturn the (always non-null) result of perform ng the substitution

* @hrows | CException

* if the substitution cannot be perforned

*/

Redact abl eObj ect doSubstitution(String type, List<String> nodifiers, String identifier,
Substi t ut abl eVal ues substitut abl eVal ues) throws | OException;

org.apache.kafka.common.security.substitutions.SubstituterTypeHelper

package org. apache. kaf ka. conmon. security. substitutions;

| **

* A tenplate {@ode SubstituterType} that handles the followi ng nodifiers:
*

* {@ode redact} -- when enabled, results are stored such that they are
* prevented from being | ogged</1i>
* {@ode not Bl ank} -- when enabl ed, blank (only whitespace) or non-existent

* results are replaced by default values. Inplies {@ode notEnpty}.

* {@ode notEmpty} -- when enabled, either explicitly or via

* {@ode notBl ank}, enpty ({@ode ""}) or non-existent results are replaced by
* default values.

* {@ode fronVal uexf Key} -- provides a level of indirection so that the

* jdentifier, instead of always being literally specified (i.e. read this

* particular file, or this particular environnent variable), can be deternined
* via sonme other key's value. This allows, for exanple, the filenane, system
* property name, etc. to potentially be generated frommultiple substitutions
* concatenated together.

* { @ode defaul tVal ue=<val ue>} -- when enabl ed, the provided literal value
* is used as a default value in case the result either does not exist or is

* disallowed via { @ode notBl ank} or {@ode notEnmpty}</Ili>

* {@ode defaul t Key=<key>} -- when enabled, the indicated key is eval uated
* as a default value in case the result either does not exist or is disallowed
* via {@ode not Bl ank} or {@ode notEnpty}</Ili>

*

* Flags (nodifiers without an equal sign) are trimed, so "{@ode redact}" and
* "{@ode redact }" are recogni zed as being the sane. Argurments (nodifiers

* with an equal sign) have their name trimmed but not their value, so

* "{@ode nane=val ue}" and "{@ode nane = value }" are both recogni zed as

* setting the {@ode nane} argunent (though their values do not match due to

* whi tespace differences).

* o <p>
* It is an error to set the same named argunment nmultiple tinmes (even if the
* values are the sanme). Redundantly specifying the sane flag is acceptable.
* <p>
* Flags and argunents are presented to the substitution type's inplenentation
* via the
* {@ink #retrieveResult(String, String, boolean, Set, Map, SubstitutableVal ues)}
* et hod.
* o <p>
* I npl ementations of the {@ink SubstituterType} interface that wish to
* | everage the help provided by this class can either extend this class
* directly or delegate to an anonynous class that extends this one.
*/
public abstract class SubstituterTypeHel per inplements SubstituterType {
/**
* Retrieve the substitution result associated with the given identifier, if
* any, otherw se null

* @aramtype

* the (always non-null/non-blank) type of substitution being

* perf or ned

* @aramidentifier

* the required (though potentially enpty) identifier as interpreted
* by the substitution inplenentation for the given type. For

* exanple, it may be a fil enane, system property nane, environnent
* vari abl e nane, etc.

* @aram redact

* if the result nmust be redacted regardl ess of any information to

* the contrary

* @aram addi tional Fl ags

* the flags specified, if any, beyond the standard {@ode redact},
* {@ode notBl ank}, {@ode not Enpty}, and {@ode fronVal ueX Key}

* flags

* @ar am addi tional Args

* the argunents specified, if any, beyond the standard

* {@ode defaul tVal ue} and {@ode defaul t Key} argunents

* @aram substitut abl eVal ues

* the key/val ue mappings and their current substitution state

* @eturn the substitution result associated with the given identifier, if any,
* ot herwi se nul |

* @hrows | CException

* if the request cannot be perforned such that the use of a default
* val ue woul d be inappropriate

*/

public abstract Redactabl eObject retrieveResult(String type, String identifier, bool ean redact,
Set <String> additional Fl ags, Map<String, String> additional Args, SubstitutableVal ues
substi t ut abl eVal ues)
throws | CExcepti on;

@verride
publ i c Redact abl eCbj ect doSubstitution(String type, List<String> nodifiers, String identifier,
Substi t ut abl eVal ues substi tutabl evVal ues) throws | OException {
Il etc...

/1 etc...

org.apache.kafka.common.security.substitutions.RedactableObject

package org. apache. kaf ka. conmon. security. substitutions;

/**
* An obj ect whose text value can be redacted
*/
public class Redactabl elbject {
static final String REDACTED = "[redacted]";
private final Object object;
private final bool ean redacted;

| **

* Constructor for an instance that will be redacted only if the given object is
* of type {@ink Password}.
*
* @aram obj ect
* the nmandatory obj ect
*/
publ i c Redact abl eCbj ect (Obj ect object) {
t hi s(Obj ects. requi reNonNul | (obj ect), object instanceof Password);

}

| **

* Constructor

*

* @ar am obj ect

* the mandatory obj ect

* @aram redact

* when true the object's value will be redacted in
* {@ink #redactedText ()}

*/

publ i ¢ Redact abl eCbj ect (Obj ect obj ect, bool ean redact) {
this.object = Objects.requireNonNull (object);
this.redacted = redact;

}

/**
* Return the (always non-null) underlying object provided during instance
* construction
* @eturn the (always non-null) underlying object provided during instance
* construction
*/
public Cbject object() {
return object;

}

| **

* Return true if this instance contains information that will be redacted when
* {@ink #redactedText()} is invoked, otherw se false
*
* @eturn true if this instance contains information that will be redacted when
* {@ink #redactedText()} is invoked, otherw se false
*/
public bool ean i sRedacted() {
return redacted;

}

| **

* Return the redacted text for this instance, if redaction is required,
* otherwi se return the {@ink #value()}
*
* @eturn the redacted text for this instance, if redaction is required,
* otherwi se return the {@ink #value()}
*/
public String redactedText () {
return redacted ? REDACTED : val ue();
}

| *x*

* Return the {@ode String} value of this instance, including information that
* woul d ot herwi se be redacted
*
* @eturn the {@ode String} value of this instance, including information that
* woul d ot herwi se be redacted
*/
public String value() {
if (object instanceof String)
return (String) object;
if (object instanceof Password)
return ((Password) object).value();

return object.toString();

* Return true if this result is considered to be enpty, otherw se false

* @eturn true if this result is considered to be enpty, otherw se false
*/
public bool ean isEmpty() {
return value().isEnpty();
}

| **

* Return true if this result is considered to be blank (containing at npst just
* whi tespace), otherw se fal se
*
* @eturn true if this result is considered to be blank (containing at npst
* just whitespace), otherw se false
*/
public bool ean isBlank() {
return value().trinm().isEmty();

* Return this instance if it is redacted according to {@ink #i sRedacted()},
* otherwi se return a new, redacted instance with the same underlying object

* @eturn this instance if it is redacted according to {@ink #i sRedacted()},

* otherwi se return a new, redacted instance with the sane underlying
* obj ect
*/

publ i c Redact abl eQbj ect redactedVersion() {
return redacted ? this : new Redact abl eCbj ect (object, true);

}

@verride

public String toString() {
/] be sure to redact information as required
return redactedText();

/Il etc...

Here is more detail about the built-in substitution types, how to invoke them from within a JAAS configuration, and how to add new substitution types.

As an example to help illustrate the sytnax, the following would support substitution of the contents of a file (which is a common way to store secrets,
especially within containers):

t hePassword="$[fi | e| redact | not Bl ank| def aul t Key=fi | eDef aul t | =/ pat h/ t o/ secrets/the_secret]"
There are several features here that deserve comment:

® The "$[" and "] " delimiters are the signal to perform a substitution (we can't use "${" and "} " because that is already defined by the JAAS
Configuration spec to mean system property substitution). Note that we will not allow substitution within a substitution, and in fact it is not needed
as described below. We will also support "$[[" and "]] " as delimiters (all the way up to 5 brackets, actually) to allow "$[" and "] " to appear in
text without causing substitution.

® Immediately inside the opening delimiter is the type of substitution followed by any optional modifiers we wish to apply. In the above, we identify
this as a file substitution and we indicate three modifiers: the resulting value should never be logged (i.e. store it such that its value will be
redacted when logged); the contents of the file must not be blank (meaning it must not be empty or only contain whitespace); if the file does not
exist or its contents are blank then use the value of the "f i | eDef aul t " key in the configuration (which could itself have substitutions). It is an
error if any constraints implied by the modifiers are violated. Any punctuation character except the equal sign (=) can be used to delimit the
modifiers.

* Immediately after the type of substitution and any optional modifiers is an equal sign ("=") followed by the identifier (which in the case of the "fi |l e
" type is interpreted as the filename to read); then ultimately the closing delimiter appears.

This scheme is flexible and powerful; it handles most cases, but it remains relatively easy to create and read. Importantly, the types of replacements can
be expanded in the future without breaking compatibility.

The initial set of supported substitution types and their supported modifiers are as follows:

Type Description Specifiable Notes

Modifiers
file File content not Bl ank, no = The identifier typically specifies the file to read. Itis an error if the file does not exist or is not readable unless def aul t Val
substitution tEnpty, reda ue ordef aul t Key is specified. If a def aul t Val ue is specified then the literal default value specified will be used and
ct,fronVval u checked against any not Bl ank or not Enpt y constraints that exist if those constraints are violated by the previously-
eCf Key determined value. If a def aul t Key is specified then the value defined by the specified key will be used and checked

against any not Bl ank or not Enpt y constraints that exist if those constraints are violated by the previously-determined
defaul t Val u | value. If the default key's value depends on substitutions that were marked r edact then r edact is implied. The f r onVal u

e=<val ue>, e Key modifier indicates that the identifier, instead of being the file to read, instead identifies the key whose value in turn
def aul t Key= | is to be taken as the filename. This provides the ability to generate filenames from multiple substitutions as opposed to
<Key> being forced to literally specify it. It is an error to try to read a file that is larger than 1 MB in size.

envVar | Environment same as above = The identifier typically specifies the environment variable to read. It is an error if the environment variable does not exist

variable unless def aul t Val ue or def aul t Key is specified. If a def aul t Val ue is specified then the literal default value specified

substitution will be used and checked against any not Bl ank or not Enpt y constraints that exist if those constraints are violated by the
previously-determined value. If a def aul t Key is specified then the value defined by the specified key will be used and
checked against any not Bl ank or not Enpt y constraints that exist if those constraints are violated by the previously-
determined value. If the default key's value depends on substitutions that were marked r edact thenredact is implied.
The f r onVal ueOf Key modifier indicates that the identifier, instead of being the environment variable to read, instead
identifies the key whose value in turn is to be taken as the environment variable name. This provides the ability to generate
environment variable names from multiple substitutions as opposed to being forced to literally specify it.

keyValue Substitution of = same as above @ The identifier typically specifies the key whose value is to be read. It is an error if the option does not exist unless def aul t
another key's Val ue or def aul t Key is specified. If a def aul t Val ue is specified then the literal default value specified will be used and
value checked against any not Bl ank or not Enpt y constraints that exist if those constraints are violated by the previously-

determined value. If a def aul t Key is specified then the value defined by the specified key will be used and checked
against any not Bl ank or not Enpt y constraints that exist if those constraints are violated by the previously-determined
value. If the default key's value depends on substitutions that were marked r edact thenredact is implied. The f r onVal u
eOf Key modifier indicates that the identifier, instead of being the key to read, instead identifies the key whose value in turn
is to be taken as the key. This provides the ability to generate a key from multiple substitutions as opposed to being forced
to literally specify it.

sysProp | System same as above = The identifier typically specifies the system property to read. It is an error if the system property does not exist unless def a
property ul t Val ue or def aul t Key is specified. If a def aul t Val ue is specified then the literal default value specified will be used
substitution and checked against any not Bl ank or not Enpt y constraints that exist if those constraints are violated by the previously-

determined value. If a def aul t Key is specified then the value defined by the specified key will be used and checked
against any not Bl ank or not Enpt y constraints that exist if those constraints are violated by the previously-determined
value. If the default key's value depends on substitutions that were marked r edact then r edact is implied. The f r onVval u
eOf Key modifier indicates that the identifier, instead of being the system property to read, instead identifies the key whose
value in turn is to be taken as the system property name. This provides the ability to generate system property names from
multiple substitutions as opposed to being forced to literally specify it.

To add new substitutions simply define a key in the configuration of the following form:

[optional TypeDefiniti onKeyPrefix]<type>SubstituterType = "fully.qualified.class.name"

For example:

fooSubstituterType = "org. exanpl e. FooSubsti t ut er Type"

The indicated class must implement the or g. apache. kaf ka. cormon. security. substitutions. Substituter Type interface. Itis recommended
(though not required) that new substitution types leverage the or g. apache. kaf ka. conmon. security. substi tutions. Substi tuter TypeHel per
class.

Invoke the substitution with text in a key's value like this:

$[foo/ optional /nodifiers/=optionalldentifier]

Proposed Changes

This KIP proposes adding the above classes to support substitution into configuration values where it is deemed appropriate. Specifically, this KIP
proposes adding support for substitution within the configuration read by the following classes to allow clients leveraging the associated SASL mechanisms
to retrieve their username and password from elsewhere if they so choose:

® org. apache. kaf ka. cormon. securi ty. pl ai n. Pl ai nLogi nMbdul e
® org. apache. kaf ka. cormon. security. scram Scr anLogi nMbdul e

Note that it would likely be possible to support substitution into configuration values in contexts other than client JAAS configurations (for example, server
JAAS configurations, or perhaps even the cluster configuration), but this KIP does not propose any of these possibilities. If any such changes are desired
then they should be proposed via separate KIPs for discussion.

Compatibility, Deprecation, and Migration Plan

There is a possibility that existing usernames or (more likely) passwords in existing client JAAS configurations could contain the "$[" and "] "
delimiters. This would cause a substitution to be attempted, which of course would fail and potentially raise an exception. This risk is low, but it
nonetheless does need to be mitigated; therefore any already-existing login modules where substitution support is to be added (hamely, the ones
mentioned above) will only enable substitution if a key/value pair is explicitly added to the JAAS configuration as follows:

enabl eSubstitution="true"

Existing behavior will remain unchanged in the absence of this explicit opt-in key/value pair. Even with this opt-in, though, we still do not want unintended
substitutions to occur, so if delimiters are recognized but a parsing error occurs (e.g. a value such as qw$[asd_4Q] uH6 would cause a substitution to be
attempted but does not ultimately meet the required syntax) the delimiters and intervening text will be passed unchanged.

Rejected Alternatives

This KIP does not define Cal | back or Cal | backHandl er implementations because configuration values are typically retrieved without using them (this
is the case with Pl ai nLogi nMbdul e and Scr anlLogi nMbdul e).

	KIP 269 Substitution Within Configuration Values

