
1.
2.
3.

User code context

There are three common contexts in Wicket from which user code may be called (numeration here implies the order in which code will be called):

page creation
event handling (optional)
rendering

public class MyPage extends WebPage ...
 public MyPage() {
 ...
 // 1 - page creation
 final Form form = new Form("form", model) {
 @Override
 protected void onSubmit() {
 // 2 - event handling (optional)
 }

 @Override
 protected void onBeforeRender() {
 // 3 - rendering
 super.onBeforeRender();
 }
 };
 add(form);
 }

Page creation

Page creation means executing code in page constructor. Page creation occurs in two cases:

page is created by Wicket using IPageFactory as a part of request processing. (How often page instance of certain class is created depends on
page type. See for more details.)Pages
page is created by user code using keywordnew

There are no restrictions on what you can do in page creation context. The common thing is to create components and models.

Beware of calling overriden methods in constructor, since at the time overriden method is called in base class constructor, child class which overrides this
method, is not fully constructed. If you call overriden methods in constructor anyway, make sure they do not use properties from child class.

Event handling

Event handling is a process of executing code in methods like onSubmit(), onClick() and the like. All these methods calls originates from implementations
of IRequestListener interface (see IRequestListener subinterfaces for the full list of all possible callbacks). Event handling may happen as many times as
event occurs (for example user produces some action). Normally event handling happens in another request than the one which created the page.
There are no restrictions on what can be done in event handling context. Although the "usual" thing is to perform some king of business logic, you can also
create/change/add/remove components. Since event handling precedes rendering, any changes to components and model will be "visible" in rendering
context.

"Context" here means some place in framework which calls user code. For example if you use , context will be a Template Method pattern
method in the parent class which calls template method. The term "context" in this meaning is just something I came up with and it is not used
in Wicket javadocs. As far as javadocs concerned corresponds to and event handling context event handling phase rendering context
corresponds to .response phase

https://cwiki.apache.org/confluence/display/WICKET/Pages
http://en.wikipedia.org/wiki/Template_method_pattern

Replacing panel in event handler

public class MyPage extends WebPage ...
 public MyPage() {
 ...
 // note that panels use the same id
 add(new Link("feedback") {
 public void onClick() {
 MyPage.this.replace(new FeedbackPanel("mainPanel"));
 }
 });
 add(new Link("about") {
 public void onClick() {
 MyPage.this.replace(new AboutPanel("mainPanel"));
 }
 });
 }

Rendering

Rendering is performed after page creation and event handling. It happens as many times as page or components (in case of ajax) is requested by
browser. Whether rendering is performed in the same request as event handling depends on .rendering strategy
Rendering consists of three parts which have different contexts:

before render (onBeforeRender() method). It's called on all visible components, unless they override callOnBeforeRenderIfNotVisible(). There are
no restrictions on what can be done in this context.

Using page's onBeforeRender() for delayed configuration

public class MyPage extends WebPage ...
 private final Label smartLabel;
 private final Label label;
 private boolean useSmartLink;

 public MyPage() {
 ...
 // note that labels use the same id
 smartLabel = new SmartLinkLabel("label");
 label = new Label("label");
 }

 public void setUseSmartLink(final boolean useSmartLink) {
 this.useSmartLink = useSmartLink;
 }

 protected void onBeforeRender() {
 if (useSmartLink)
 addOrReplace(smartLink);
 else
 addOrReplace(link);

 super.onBeforeRender();
 }

component rendering (IModel#getObject(), onComponentTag(), onComponentTagBody() methods). To distinct between rendering on the whole
and the part of rendering which produces markup, is used here to refer to markup creating."component rendering"

 is performed only for visible components and is not allowed to change components state or models. Component rendering
Reason for not changing components and models during rendering is that they maybe shared between components and changing them may lead
to inconsistent results. In the example below two labels use the same model which is changed during rendering of the second label. The
consequence is that output of the first label depends entirely on the order in which labels appear in markup file.

https://cwiki.apache.org/confluence/display/WICKET/Render+strategies

Changing model during component rendering. Result depends on markup. Don't do that.

public class MyPage extends WebPage ...
 public MyPage() {
 ...

 final IModel model = new Model("---first label text---");

 final Label label = new Label("label", model);
 final Label label2 = new Label("label2", model) {
 protected void onComponentTag(final ComponentTag tag) {
 super.onComponentTag(tag);
 model.setObject("---second label text---");
 }
 };
 }

In most cases component will throw exception if it detects that it's being changed. Though no exception will be thrown in case of calling is
/setEnabled() and some other methods when they are called on not versioned component (see). There are also no Component versioning
warnings if model is changed using IModel#setObject() method.

after rendering (onAfterRender() method). It's called on all components regardless their visibility. As component rendering it should not change
components state or models.

Models

Model's methods are called by Wicket in some of the above contexts. Generally, you don't need to think when model methods are called and what rules
apply unless you are writing some clever code inside a model. This example code shows in comments when model methods may be called:

public class MyPage extends WebPage ...
 public MyPage() {
 ...
 final Model model = new Model() {
 public Object getObject() {
 // called on event handling and component rendering
 return super.getObject();
 }

 public void setObject(final Serializable object) {
 // called on event handling
 super.setObject(object);
 }
 };
 final TextField text = new TextField("text", model);
 }

#
https://cwiki.apache.org/confluence/display/WICKET/Working+with+Wicket+models

	User code context

