
1.
2.
3.
4.

5.

6.

7.

8.

9.

Evolution of web application frameworks
Currently just a braindump... feel free to improve - at least keep the positive attitude towards REST, please

Webserver delivering static files
CGI - calling dynamic scripts, mapping configured by eg. regexps in static webserver
Templating languages allow meshing logic with Markup: PHP, ASP, simplifies the generation of HTML
Java servlets - fully Java interface to server-side HTTP, own "dynamic" webserver = servlet container

Base mapping with servlets: context path to separate servlets
Various mappings implemented in Java behind the servlet api (eg. Cocoon)
JSP as a template language for JavaServlets

Concentration of backends and server-to-server communication ("Enterprise" segment): J2EE with Java beans, RMI, JDBC, ORM
did not make any use of the advantages of REST present in HTTP and the web

Inter-server communication: webservices, XML-RPC, SOAP
frameworks with focus on automated generation of service endpoints
no HTML, no REST
no improvements for making it easier to quickly create nice user interfaces
tons of files (one resource = interface, bean implementation, dao object, etc., see)here

More standards: Java server faces, a full MVC object model inside the server
makes things more complicated, especially when considering a thin server architecture

Ruby on Rails: large improvement for the developer through scaffolding files, following the DRY principle
considered state-of-the-art
can be done with java as well: Grails
scaffolding (both through CLI scripts and method-not-found-interceptors in dynamic languages) make it easier to work with this large
bunch of objects/classes/files on the server side

Sling: TNGWAF - the next generation web application framework
server-side made thinner through resources as a first-class concept
no need for complicated MVC patterns just to get from URL to relational database
flexibility through scripting
power of 10+ year development of Java VMs
OSGi for better software lifecycle management and more uptime (updates without restart)

http://martin-probst.com/blog/2007/12/20/spring-mvc-web-framework-not-so-l33t
http://unclescript.blogspot.com/2008/01/end-of-web-frameworks.html
http://grails.org/

	Evolution of web application frameworks

