Proposal: Data Layering for Base64, Line-Folding,
Compression, Etc

Revised per changes on 2021-10-06

Describes the feature as-is-built 2018-05-14.

This memo describes a proposed feature for expressing data layering of pre/post processing operations.

The term "layer" refers to a data stream, but encompasses the notion that the data stream may not be the original source/target of data, but rather can be
computed (when parsing) via a transformation on the data. This is called a layering transformation as one data stream is a layer of interpretation on top of
a lower level data stream. Layers can generalize to any depth. As with the term "stream", a "layer" does not connote a direction. For parsing one uses an
input data layer, for unparsing an output data layer.

For some DFDL purposes, it does not matter whether the underlying data is an original data stream, or a data stream created by way of a layering
transformation. In that case we may refer to "the data stream" meaning either the underlying raw data stream, or a data stream created by way of a layered
transformation.

Where we must distinguish beween layers, we will use the terms "underlying layer" and "overlying layer" to distinguish the levels.

Most of the discussion here will use parsing as context, but where the unparsing is not clearly symmetric, unparsing will also be described.

New DFDL schema annotations are shown in the "daf:" namespace so as to be clear what are DFDL standard, and what the new proposed extensions
are. Our hope would be that these extensions will be suitable for inclusion in a revision of the DFDL standard. (E.g., DFDL v2.0).

The Layering Properties
The following properties are added to dfdl:sequence (with corresponding short forms). They require the "dfdIx" (DFDL extension) namespace prefix.

layerTransform (literal string) - XSD NCName

layerEncoding (literal string or DFDL expression)

layerLengthKind - Can be 'implicit', 'explicit’, or 'boundaryMark'.

layerBoundaryMark (literal string or DFDL expression) - used with dfdl:layerLengthKind 'boundaryMark’
layerLength (literal string or DFDL expression) - used with dfdl:layerLengthKind 'explicit'

The initial transform names and their supported layerLengthKinds are:

® base64_MIME - layerLengthKind ‘boundaryMark' only

® gzip - layerLengthKind 'explicit' only

® JineFolded_IMF - layerLengthKind 'boundaryMark’ (without a layerBoundaryMark property - not used. Always CRLF), or layerLengthKind 'implicit'
which extends to end of available data.

® lineFolded_iCalendar - same as lineFolded_IMF

An example layer transform is provided also as a test case:

® aisASCIIArmor - layerLengthKind is assumed to be 'boundaryMark’ (the property layerLengthKind is ignored), and the boundary mark is assumed
to be "," (Comma). This format is the ASCll-armoring used by the AIS (Automated Identification System) format used for ship identification.

Transform names are very specific. They identify not a general class of transformations, but the specifics of the algorithm. For example base64_MIME is
the style of base64 encoding/decode used for MIME attachments in Internet messages. It includes limiting the length of lines in the encoded representation
to 75 long.

The dfdl:lengthKind 'implicit’ means that the transform algorithm itself determines when the encoded data ends. The other length kinds are accompanied
by properties allowing isolation of the data that is to be transformed (for parsing).

Note that there is no layerEscapeSchemeRef property - escaping is assumed to not be required by the layering transformation algorithms, or any such
behavior would be built-in to the transformation algorithm.

These properties obey all the usual scoping rules. They can appear on dfdl:format annotations so as to be part of named format definitions or even put into
lexical scope over a schema file.

The meaning of the values of these properties, and any constraints on those values, are essentially specified by the layer transform algorithm. For
example: for layerLengthKind 'boundaryMark' and the base64 layer transform, we expect that the layerBoundaryMark must be a string, and this string has
constraints beyond those we see in the the regular dfdl:terminator property. In particular for base64, we expect that layerBoundaryMark cannot contain
DFDL character entities of any kind. This makes it impossible, for example, for a base64 'boundaryMark' layer to be bounded by a string containing ASCII
NUL (character code 0), as there is no way to express this without use of DFDL character entities. These limitations must be enforced by the algorithms
themselves.

To show these new annotations at work, a named format that specifies a layering is created via

<daf : def i neFor mat name="base64Format" >
<dfdl : format dfdl x:|ayer Transf or m="base64_M ME" df dl x: | ayer Lengt hKi nd="boundar yMar k" />
</ df dl : def i neFor nat >

These properties are only relevant to xs:sequence constructs, and so a dfdl:ref to a named format using these layer properties is only sensible from a dfdl:
sequence or on an xs:sequence.

An xs:sequence where the layerTransform property is defined and non-empty string, is said to be a layered sequence.
Some restrictions apply:

® A layered sequence can have only one child term.

® A layered sequence cannot carry statement annotations (e.g., dfdl:setVariable, dfdl:newVariableInstance, dfdl:assert, etc.)

® All sequence properties other than those beginning with "layer" prefix, are ignored. If they are specified directly on an xs:sequence in short form,
or on its dfdl:sequence annotation element, then a warning should be issued.

Layer transforms apply to the SequenceContent grammar region per DFDL Spec Section 9.2.

A layered sequence has a mandatory layer alignment (analogous to mandatory text alignment). This is 1 byte for all currently specified layer transforms; in
the future this may change.

A layered sequence has a mandatory length unit. This is 1 byte for all currently specified layer transforms; in the future this may change.

If the length of a layered sequence is needed, for example to store the length of the transformed representation using dfdl:outputValueCalc, then the
layered sequence must be enclosed in an element, and the dfdl:contentLength(...) of that element provides the length of the transformed content.

Data Layers as Streams

A data layer is conceptually a stream of bytes. It can be an input layer for parsing, an output layer for unparsing.
Use of the term "stream" here is consistent with java's use of stream as in java.io.InputStream and java.io.OutputStream. These are sources and sinks of
bytes. If one wants to decode characters from them you must do so by specifying the encoding explicitly.

A layer transform is a transformation that creates one layer of bytes from another. An underlying layer is encapsulated by a transformation to create an
overlying layer.

When parsing, reading from the overlying layer causes reading of data from the underlying layer, which data is then transformed and becomes the bytes of
the overlying layer returned from the read.

The layer properties apply to the underlying layer data and indicate how to identify its bounds/length, and if a layer transform is textual, what encoding is
used to interpret the underlying bytes.

Some transformations are naturally binary bytes to bytes. Data decompress/compress are the typical example here. When parsing, the overlying layer's
bytes are the result of decompression of the underlying layer's bytes.

If a transform requires text, then a dfdl:format encoding must be defined. For example, base64 is a transform that creates bytes from text. Hence, a layer
encoding is needed to convert the underlying layer of bytes into text, then the base64 decoding occurs on that text, which produces the bytes of the
overlying layer.

We think of some transforms as text-to-text. Line folding/unfolding is one such. Lines of text that are too long are wrapped by inserting a line-ending and
either a space or tab. As a DFDL layer transform this line folding transform requires an encoding. The underlying bytes are decoded into characters
according to the encoding. Those characters are divided into lines, and the line unfolding (for parsing) is done to create longer lines of data, the resulting
data is then encoded from characters back into bytes using the same encoding.

(There may be opportunities to optimize/shortcut these transformations if the overlying layer is the data layer for an element with scannable text
representation using the same character set encoding. The re-conversion back to bytes, only to have to then decode bytes to characters of the same
encoding again is overhead that can be avoided.)

DFDL can describe a mixture of character set decoding/encoding and binary value parsing/unparsing against the same underlying data representation;
hence, the underlying data layer concept is always one of bytes.

(Note: bytes suffices even for mil-std-2045 which can hold a compressed VMF payload. This payload element is always byte aligned even in mil-std-2045,
a very bit-oriented format. As of this writing we have no examples of layer transforms that require bit granularity; hence, this is a byte-oriented proposal.)

Daffodil parsing begins with a default standard data input stream. Unparsing begins with a default standard output stream. These are the ultimate
underlying layer.

When parsing, left-over data is possible. The decoded layer data may contain extra data that is not consumed by the parse. It is a Parse Error if there is
not enough data. Excess data is skipped/ignored.

When unparsing, extra data may have to be created (padding/filling) to satisfy the layer unparsing algorithm. The DFDL schema for the xs:sequence

content must create this padded/filled extra data. It is an Unparse Error if the data created when unparsing that is provided to the layer transform encoding
algorithm does not satisfy its length requirements.

Parameterization and Computed Results (Checksums, CRC, Parity):

http://java.io
http://java.io

Layer transform algorithms can read and write DFDL Variables. Combining use of a layer with dfdl:newVariableInstance allows one to specify parameters
to a particular layering transform, as well as to receive values back from the layer transform. This allows computation of things like checksums, CRCs, or
parity across the contents of a layer.

Examples using Data Layering

When a DFDL schema wants to describe say, gzip encoding, then the DFDL annotations might look like this:

<annot at i on><appi nfo source="http://ww. ogf.org/dfdl /">
<df dl : def i neFor mat nane="conpr essed" >
<dfdl : format dfdl x:|ayerTransfornm="gzi p" dfdl x:|ayerLengt hKi nd="explicit" />
</ df dl : def i neFor mat >
</ appi nf o></ annnot at i on>

<sequence dfdl:ref="tns: conpressed">
<group ref="tns: conpressedG oupContents" dfdl x:|ayerLength="{...}" />
</ sequence>

The above annotation means: when parsing this sequence, take whatever data layer is in effect, layer a gzip data layer on it, and use that until the end of
the gzipped data - in this case until the length expressed in the layerLength expression is reached.

If we need to determine or verify the length of the layered data, then we must encapsulate the layered sequence in an element so that a path expression
can refer to it.

<annot at i on><appi nfo source="http://ww. ogf.org/dfdl /">
<df dl : def i neFor mat nanme="conpressed" >
<dfdl: format ref="ex:general" dfdlx:|ayerTransform="gzip" dfdx:|ayerLengthKi nd="explicit" dfdlx:
| ayer Lengt hUni t s="bytes" />
</ df dl : def i neFor mat >
<dfdl:format ref="ex:general" />
</ appi nf 0></ annnot at i on>

<xs:sequence>
<xs: el enent name="conpressedPayl oadLengt h" type="xs:int" dfdl:representation="binary"
df dl : out put Val ueCal c='{ dfdl:contentLength(../conpressedPayl oad, "bytes") }' />

<xs: el enent name="conpressedPayl oad" >
<xs: conpl exType>
<xs:sequence dfdl:ref="tns: conpressed" dfdlx:|ayerLength="{ ../conpressedPayl oadLength }">
<xs:group ref="tns: conpressedG oupContents" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: sequence>
<xs:annot ati on>
<xs:appi nfo source="http://ww.ogf.org/dfdl/">
<df dl : assert>{ conpressedPayl oadLength eq dfdl: contentLength(conpressedPayl oad, "bytes") }<
/df dl : assert>
</ xs: appi nf 0>
</ xs:annot ati on>
</ xs: sequence>
<xs: el enment name="after" type="xs:string" dfdl:|engthKind="delimted" />
</ xs: sequence>

The above illustrates how one obtains length information for layered sequences. The compressed sequence is the complex type model group of the
compressedPayload element. The compressedPayloadLength element uses dfdl:outputValueCalc to determine the content length of the
compressedPayload element, so that it can be stored when unparsing, and the assertion after the compressedPayload element verifies (when parsing)
that the length matches what was stored.

The APIs for defining the gzip, base64, or other transformers enable one to do these transformations in a streaming manner, on demand as data is pulled
from the resulting data stream of bytes. Of course it is possible to just convert the entire data object, but we want to enable streaming behavior in case
stream-encoded objects are large and an implementation wants to optimize this case.

Let's look at an example of two interacting data layer transforms. Below we have an example that is contrived, but has some resemblance to MIME
formats. It parses a textual format where all lines that are too long are folded. WIthin it there are delimiter strings and layer boundaryMark strings (same
string actually), computed from the data. The actual data 'payload' here is in the child element named 'body', and it is just a string, but it is base64
encoded. More typically, base64 would be used for binary data, or for text with complex character set encodings. This example is just using a string for
exposition purposes.

<annot at i on><appi nfo source="http://ww. ogf.org/dfdl /">
<df dl : defi neFor mat name="base64" >
<dfdl: format ref="ex:general" dfdlx:|ayerTransform"base64_M ME" dfdl x: | ayer Lengt hKi nd="boundar yMar k"
df dl x: | ayer Lengt hUni t s="byt es"
| ayer Encodi ng="i so- 8859- 1" />
</ df dl : def i neFor mat >
<df dl : def i neFor mat name="f ol ded" >
<dfdl: format ref="ex:general" dfdlx:|ayerTransform="1ineFol ded_I M= dfdl x:|ayerLengthKi nd="inplicit"
df dl x: | ayer Lengt hUni t s="byt es"
| ayer Encodi ng="i so- 8859-1" />
</ df dl : defi neFor mat >
</ appi nf 0></ annnot at i on>

<xs: el enment nanme="root" dfdl:IengthKind="inplicit">
<xs: conpl exType>
<xs:sequence dfdl:ref="fol ded"> <!-- From here, everything is line-folded -->
<xs: sequence>
<xs: el enent name="nmarker" type="xs:string"
df dl :initiator="boundary=" dfdl:term nator="%R %F;" />
<xs: el ement nanme="contents" dfdl:|engthKind="inmplicit"
dfdl:initiator="{ fn:concat('--', ../marker, '%R %F;') }">
<xs: conpl exType>
<Xs:sequence>
<xs: el enment name="comment" type="xs:string"
dfdl:initiator="Comment: %6P;" dfdl:term nator="%R; %F;" />
<xs: el ement nane="content Transf er Encodi ng" type="xs:string"
df dl :initiator="Content-Transfer-Encodi ng: %6P; "
dfdl : terminator="%R %.F;" />
<xs: el ement name="body" dfdl:lengthKind="inplicit" dfdl:initiator="%R %AF; ">
<xs: conpl exType>
<xs: choi ce dfdl: choi ceDi spat chKey="{ ../contentTransferEncoding }">
<xs: sequence dfdl:choi ceBranchKey="base64" >
<xs:sequence dfdl:ref="tns: base64"
df dl : | ayer Boundar yMar k="{
fn:concat (df dl : decodeDFDLEntities(' %R %AF;")," --', ../../marker, '--")
}"> <!-- base64_M ME encoding for this sequence -->
<xs: el enent nane="val ue" type="xs:string" />
</ xs: sequence> <!-- END base64_M ME encoding -->
</ xs: sequence>
<l--
This is where other choice branches than base64 woul d go
-->
</ xs: choi ce>
</ xs: conpl exType>
</ xs:elenent> <!-- END el enent body -->
</ xs: sequence>
</ xs: conpl exType>

</xs:element> <!-- END el enent contents -->
</ xs: sequence>
</ xs:sequence> <!-- END line folding -->

</ xs: conpl exType>
</ xs: el enent >

The data corresponding to the above schema is shown here:

boundary=fronti er %CR;

--frontier%R;

Comment: This sinulates a header field that is so long it will get fol ded%CR;
into multiple lines of text because it is too long and ny job is at the%CR
redundancy departnment is where | work. %CR;

Cont ent - Tr ansf er - Encodi ng: base64%CR;

UCR;

Ty ZWgaXBzdWgZX@sh3l gc2l 01 Gt ZXQs | G\NvbnN Y3R dHVY | GFkaXBpc2Npbnt gZWk pd Owg %CR;

c2VKkl GRvI GvpdXNt b2QgdGvt c@yl G uY2l kaWRlbnQydXQybGFi b3JI | GVOI GRvb&yZSBt YWHUYCR,

YSBhbd xdWEul FVOI GVuaWdg YWQ=%CR,;

--frontier--

The above data uses "%CR;" a DFDL Character Entity, to indicate a literal carriage-return or CR character which is U+0d. When looking at this data, keep
in mind that %CR; looks like 4 characters, but is actually only 1.

In the data notice the line initiated by "Comment:". That line has been folded by inserting CRLF before a space, twice to insure no line is longer than 78
characters.

The above data parses to this DFDL infoset - presented as XML. (Apologies for the long lines, but when illustrating line wrapping/folding, they're inevitable.)

<ex: r oot >
<mar ker >f ront i er </ mar ker >
<cont ent s>
<comment ><! [CDATA[Thi s sinul ates a header field that is so long it will get folded into nultiple lines of
text because it is too long and ny job is at the redundancy department is where | work.]]></comment>
<cont ent Tr ansf er Encodi ng>base64</ cont ent Tr ansf er Encodi ng>
<body>
<val ue><![CDATA[Lorem i psum dol or sit amet, consectetur adipiscing elit, sed do eiusnod tenpor incididunt
ut |labore et dolore nagna aliqua. U enimad]]></val ue>
</ body>
</ cont ent s>
</ ex: root >

In the above the base64 has been decoded into a long string of "Lorem ipsum" nonsense, and the line-folded comment has been unfolded. This data can
be unparsed with the same DFDL schema to get back the data representation shown previously. That is to say this data "round trips" through parsing and
unparsing.

Example of Multi-layer Transformation

Here's some CSV data

last,first, n ddl e, DOB

sm t h, robert, brandon, 1988- 03- 24
j ohnson, j ohn, henry, 1986-01- 23
jones, arya, cat, 1986- 02- 19

Here's that data gzipped, which takes 115 byte, pre-pended by a 4-byte integer containing that 115 value (storing the length), then the whole thing base64
encoded:

We'll pre-pend that with a 4-byte binary integer holding the length of 168 which is 4 more bytes: 0000 00A8, then base64 encode all of it:

AAAAC x +L CAAAAAAAAAAL y UEKgCACheGI4EL1M DW t t GF-MDxpaNQ o5t uXOKb98P7Li oVj i Tf 3sn7
K8Cyzl qVAUI kr cgFTYh9pnBTOO nUPba3Xny OX7W EQ qf xgJ1B6xpzKEDyEOxUf 7JoJqle/ Rl 4
WXl AAAA=

The schema that describes the CSV data without the stream transforms is this:

<xs: el ement nane="file" type="ex:fileType" />

<xs: conpl exType nane="fil eType">
<Xs:sequence>
<xs: el enent name="data" dfdl:|engthKind="inplicit">
<xs: conpl exType>
<Xs:sequence>
<xs:group ref="ex:fil eTypeG oup" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>

<xs:group nanme="fil eTypeG oup">
<xs:sequence dfdl:separator="9%\L;" dfdl:separatorPosition="postfix">
<xs: el enent name="header" mi nCccurs="0" maxCccurs="1" dfdl:occursCountKi nd="inplicit">
<xs: conpl exType>
<xs:sequence dfdl:separator=",">
<xs:el ement nanme="title" type="xs:string" naxCccurs="unbounded" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el enent name="record" maxOccurs="unbounded">
<xs: conpl exType>
<xs:sequence dfdl:separator=",">

<xs: el enment name="iteni' type="xs:string" maxOccurs="unbounded" dfdl:occursCount="{ fn:count(../..

/ header/title) }"
df dl : occur sCount Ki nd="expr essi on" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ xs: sequence>
</ xs: group>

We can annotate this schema with additional stream transform information to enable it to describe the base64 encoded, compressed data.

One easy way to do this is by modifying the complex type definition for fileType to this:

<xs: conpl exType nane="fil eType">
<l--
first we have the base64 details
-->
<xs:sequence dfdl:ref="ex: base64" dfdl x: | ayer BoundaryMar k="--END--">
<xs: sequence>
<l--
now the gzip details, including the 4-byte gzLength el enent that stores how | ong
the gzipped data is.
-->
<xs: el ement nanme="gzLength" type="xs:int" dfdl:representation="binary" dfdl:IengthKind="inplicit"
df dl : out put Val ueCal c="{ dfdl:contentLength(../data, 'bytes') }" />
<l--
this 'data' element is needed only because we have to measure how big it is when unparsing.
If we were only worried about parsing, we woundn't need to have this extra 'data' el enent w apped
around
the contents.
-->
<xs: el ement nane="data" dfdl:IengthKind="inplicit">
<xs: conpl exType>
<l--
now t he gzi pped | ayered sequence itself
-->
<xs:sequence dfdl:ref="ex: gzip" dfdl x:layerLength="{ ../gzLength }">
<l--
finally, inside that, we have the original fileTypeG oup group reference.
-->
<xs:group ref="ex:fil eTypeG oup" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: sequence>
</ xs: conpl exType>

Along with that we need the definitions of these named stream formats and default format:

<df dl : defi neFor mat nanme="general ">
<dfdl: format ref="ex: General Format" |engthKi nd="del i m ted" output NewLi ne="%CR; %.F; " dfdl x: | ayer Encodi ng="
i so-8859-1"
df dl x: | ayer Lengt hUni t s=' bytes' />
</ df dl : def i neFor mat >

<df dl : def i neFor mat name="base64">

<dfdl:format ref="ex:general" dfdl x:|ayerTransform="base64_M ME" dfdl x: | ayer Lengt hKi nd="boundar yMar k" />
</ df dl : def i neFor mat >
<df dl : def i neFor mat nanme="gzi p">

<dfdl: format ref="ex:general" dfdlx:|ayerTransform="gzip" dfdl x:|ayerLengthKi nd="explicit" />

</ df dl : def i neFor nat >

<dfdl:format ref="ex:general" />

the this schema parses this data, undoing both layers to obtain the expected infoset of:

<ex:file>
<gzLengt h>115</ gzLengt h>
<dat a>
<header >
<title>last</title>
<title>first</title>
<title>mddle</title>
<title>DOB</title>
</ header >
<recor d>
<itempsm th</iten>
<itenprobert</iten>
<i t enmbr andon</i ten»
<i ten>1988-03- 24</itenr
</record>
<recor d>
<i tenpj ohnson</i tenp
<i tenpjohn</iten>
<i tenrhenry</itenr
<itenm>1986-01-23</itenr
</record>
<recor d>
<i tenpj ones</iten>
<itenparya</itenp
<itempcat</itenp
<iten>1986-02-19</itenr
</record>
</ dat a>
</ex:file>

This schema will round-trip parse then unparse, then parse again, the data.

Summary

® allows stacking transforms one on top of another. So you can have base64 encoded compressed data as the payload representation of
a child element within a larger element.

allows specifying properties of the underlying data layers separately from the properties of the logical data.

scopes the transforms over a xs:sequence body only.

Avoids new annotation elements with particulars about scoping.

Simple: doesn't add new functions for layering use when existing dfdl:contentLength will already handle it.

Complex cases - e.g., initiator before layered data, are handled by encapsulating the layered sequence in another sequence or element that
carries the initiator.

Layer annotations are only about the determining of the length of the layered region, and the algorithm for transforming the data.

Layer transforms have mandatory layer alignment (1 byte for now)

® Layer transforms can read DFDL variables for parameters, and write results to DFDL variables.

Open Design Issues

® Debug and trace impact, and how to provide visibility to what is going on when an error occurs in the middle of parsing/unparsing when
transforms are in use. E.g., the bit/byte position where a run time parse error occurs would be in some transformed stream, not the underlying
stream. | suspect some experience with these transform concepts will be needed before there will be enough information to propose ideas here.

Below is For the Future, once Quoted Printable has been implemented.

VCalendar Example Using Quoted-Printable

Consider this VCALENDAR Data:

BEQ N: VCALENDAR

PRODI D:

VERSI ON: 1. 0

BEG N: VEVENT

DTSTART: 20170903T170000Z

DTEND: 20170903T173000Z

LOCATI ON: test | ocati on

Ul D: 040000008200E00074C5B7101A82E0080000000010156B50B224D301000000000000000

01000000083A43200A4E43F4EB00BE12703B99BFO

DESCRI PTI ON; ENCODI NG=QUOTED- PRI NTABLE: =
Text that will require line folding: Loremipsumdolor sit anet, consecte=
tur adipiscing elit, sed do eiusnpd tenpor incididunt ut |abore et dolore=
magna aliqua. U enimad mnimveniam quis nostrud exercitation ullanto=
laboris nisi ut aliquip ex ea cormpdo consequat. Duis aute irure dolor i=
n reprehenderit in voluptate velit esse cillumdolore eu fugiat nulla par=
iatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui =
officia deserunt nollit animid est |aborum =0D=0A=0D=0A =0D=0A=0D=0A=0D==
=0A

SUMVARY: t est subj ect

PRIORITY: 3

END: VEVENT

END: VCALENDAR

We want to create a schema that describes this.

In the above there are two behaviors that require use of stream transforms. First is the UID. This has been broken to a maximum line length of 76
characters by way of the folded-lines transformation.

The second is the DESCRIPTION which uses a transformation called QUOTED-PRINTABLE which both achieves short line lengths, and also enables
embedding of CR, LF, and other characters at the ends of lines.

The result is that we want this XML Infoset:

<VCal endar >
<Prodl D>-//M crosoft Corporation//CQutlook 15.0 M MEDI R/ / EN</ Pr odl D>
<Ver si on>1. 0</ Ver si on>
<VEvent >
<DTStart></DTStart >
<DTEnd></ DTEnd>
<Location>test |ocation</Location>

<Ul D>040000008200E00074C5B7101A82E0080000000010156B50B224D30100000000000000001000000083A43200A4E43F4E800BEL12703B
99BFO</ Ul D>
<Descri ption>
<Encodi ng>QUOTED- PRI NTABLE</ ENCODI NG>
<QP/ >

<Val ue>Text that will require line folding: Loremipsumdolor sit
amet, consectetur adipiscing elit, sed do eiusnod tenpor incididunt ut
| abore et dolore nagna aliqua. W enimad minimveniam quis nostrud
exercitation ullanto laboris nisi ut aliquip ex ea cormpdo consequat .
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt nollit animid est
| abor um QOD;
&#x EQOD;
&#Hx EQOD;
&#x EQOD;
&#x EQQOD;
</ Val ue>
</ Descri pti on>
<Sunmmar y>t est subj ect </ Summar y>
<Priority>3</Priority>
</ VEvent >
</ VCal endar >

Notice the CRLFs at the end. The CRs are represented as remapped to Private-Use-Area(PUA) EOOD entities.

The DFDL schema for this, including the specification of the layering transform behaviors is below. This assumes a hypothetical layerLengthKind of
‘pattern’.

<xs:schema>
<dfdl : format separatorPosition="infix" dfdlx:|ayerLengthKi nd="boundar yMark" encodi ng="utf-8"
occur sCount Ki nd="par sed" separator="" sequenceKi nd="or der ed"

separ at or Posi tion="infix"/>

<df dl : defi neFor mat nanme="f ol ded" >

<dfdl: format dfdl x: I ayer Transforn¥"f ol dedLi nes" dfdl x: | ayer Lengt hKi nd="boundar yMar k" df dl x: | ayer Encodi ng="us-

ascii"/>
<!-- boundaryMark here means to enclosing end-of-data, as no boundary mark delimter is defined. -->
</ df dl : def i neFor nat >

<df dl : defi neFor mat name="qp">
<dfdl : format dfdl x:|ayerTransforne"quot edPrintabl e" dfdl x:|ayerLengt hKi nd="pattern"
df dl x: ayerLengt hPattern="["\ n]*?2(?=(?<!=)\n)"/>

<l-- QPs are termnated by a newine that is not preceded by an =.
This final newine is not consuned as part of the content. -->
<l-- Alternatively, the QP transformitself can determne the length
by searching for this final newine (but leaving it there).
I'n which case the |l engthKind would be "inplicit" -->

</ df dl : def i neFor mat >

<xs: el ement nane="VCal endar"” dfdl:initiator="BEG N. VCALENDARYNL; " dfdl :term nat or =" END: VCALENDARYNL; END:
VCALENDAR' >
<xs: conpl exType>
<xs:sequence dfdl:separator="9\L;" dfdl:sequenceKi nd="unordered">
<xs:sequence dfdl:ref="tns:fol ded">
<xs: el ement name="Prodl D' type="xs:string" dfdl:initiator="PRODID:" m nCccurs="0"/>
</ xs: sequence>
<xs: el enment name="Version" type="xs:string" dfdl:initiator="VERSION." m nCccurs="0" />
<xs: el enment name="VEvent" maxCccurs="unbounded" m nOccurs="0" dfdl: occursCountKi nd="par sed"
dfdl :initiator="BEGA N VEVENTYNL; " dfdl:term nator="END: VEVENT" >
<xs: conpl exType>
<xs: sequence dfdl:separator="%\L;" dfdl:sequenceKi nd="unordered">
<xs: el enent nanme="DTStart" type="xs:string" dfdl:initiator="DISTART:" />
<xs:el enent name="DTEnd" type="xs:string" dfdl:initiator="DITEND." />
<l--
content fromhere could have long lines, so nust be folded
-->
<xs: sequence dfdl:ref="tns:fol ded">
<xs: el enent name="Location" type="xs:string" dfdl:initiator="LOCATION:" m nQccurs="0"/>
<xs: el ement nanme="U D' type="xs:string" dfdl:initiator="U D" mnCccurs="0"/>
<xs: el enent name="Description" dfdl:initiator="DESCRI PTION:" mi nCccurs="0">
<xs: conpl exType>
<Xs:sequence>
<xs: el enent nanme="Encodi ng" type="xs:string"
dfdl :initiator="ENCODI NG=" dfdl:term nator=":" m nCccurs="0" />
<xs: choi ce dfdl: choi ceDi spatchKey="{ if (fn:exists(./Encoding)) then ./Encoding el se
<l--
we inspect the value of the Encoding el ement and deci de what branch of the choice
based on it

-->
<xs: sequence dfdl: choi ceBranchKey="QUOTED- PRI NTABLE" >
df dl : separator="" dfdl: sequenceKi nd="unor der ed" >
<l--
Each branch starts with a distinct dummy elenent to satisfy the UPA rules of XM

Schema

-->

<xs: el enent name="QP" type="xs:string" dfdl:inputValueCalc="{ "' }" />

<l--

Here notice that the layerRef for the qp data is scoped to just this inner elenent.

-->
<xs:sequence dfdl:ref="tns:qgp">

1>

<xs: el ement nane="Val ue" type="xs:string"/>
</ xs: sequence><!-- end |l ayer quoted printable -->
</ xs: sequence>
<l--
repeat the above pattern for the choice branches for the various encodings
-
</ xs: choi ce>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="Summary" type="xs:string" dfdl:initiator="SUMWARY:" mi nQccurs="0"/>
<xs: el ement name="Priority" type="xs:string" dfdl:initiator="PRIORITY:" m nQccurs="0" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ xs: sequence><!-- end fol ded | ayer -->
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>

	Proposal: Data Layering for Base64, Line-Folding, Compression, Etc

