WAN Gateway Sender Callback APl & Dead-letter queue
example implementation

Overview
Goals
Not in Scope
Approach
New API + Changes to existing APIs
o Java Definition
© Java Configuration
= GatewaySender
= GatewayReceiver
© Gfsh Configuration
" gateway-sender
= gateway-receiver
© XML Configuration
® gateway-sender
= gateway-receiver
® Potential Future Enhancements
® Current Implementation
® Proposed Implementation

Overview

The WAN replication feature allows 2 remote data centers, or 2 availability zones, to maintain data consistency. In the case where one data center cannot

process incoming events for any reason, the other data center should retain the failed events so that no data is lost. Currently if data center 1 (DC1) is able
to connect to data center 2 (DC2) and send it events, those events are removed from the queue on DC1 when the ack from DC2 is received, regardless of
what happens to them on DC2. This behavior is controlled by the internal system property REMOVE_FROM_QUEUE_ON_EXCEPTION which defaults to

true. Most common exceptions thrown from a receiving site include:

LowMemoryException - when one or more members is low on memory
CacheWriterException - when a CacheWriter before* method throws an exception
PartitionOfflineException - when all the members defining a persistent bucket are offline
RegionDestroyedException - when the region doesn't exist

Malformed data exception (unable to deserialize)

Goals

We will provide a mechanism for users to preserve events on the gateway sender that do not get successfully processed on the receiving data center. Our
example implementation will store these events on disk at the sending data center and notify the user what events did not get transmitted.

1. Deprecate (and later remove) the internal system property REMOVE_FROM_QUEUE_ON_EXCEPTION, but detect if it is set to false and support
existing behavior (infinite retries)
2. Create a new callback API that will be executed when an exception is returned with the acknowledgement from the receiver
3. Provide an example implementation of the callback that saves events with exceptions returned from the receiver in a 'dead-letter' queue on the
sender (on disk)
4. Add a new property for the gateway sender to specify the path to the custom implementation of the callback.
a. If no path is provided, use default, example implementation
b. if property is not specified, revert to existing behavior (removing events from the queue when ack is received, ignoring batch exceptions)
5. Add 2 new properties for the gateway receiver to control when to send the acknowledgement with the exceptions:
a. the number of retries for events failing with an exception
b. the wait time between retries

Not in Scope

1. Providing the ability to directly replay events from the dead-letter queue.

Approach
Our current design approach is as follows:

1. Deprecate existing internal boolean system property: REMOVE_FROM_QUEUE_ON_EXCEPTION
a. Continue to support default behavior if boolean set to false by setting # retries on receiver to -1
2. Create new Java API

a. Define callback API for senders to set callback to dispatchers

b. If sender is configured with a callback, invoke the callback if batch exception occurs prior to batch removal

c. Implement a default callback API (see item 5 below)

d. Add properties on gateway receiver factory to specify # retries for a failed event and wait time between retries.
3. Modify Gfsh commands

a. Add option to gfsh ‘create gateway sender’ command to specify custom callback
b. Add options to gfsh ‘create gateway receiver’ command to set # retries and wait time between retries



c. Store new options in cluster config

i. Sender: callback implementation

ii. Receiver: # of retries and wait time between retries
. Add support in cache.xml for specifying new callback for gateway sender and setting new options for gateway receiver
. Create example implementation of Sender callback that writes event(s) and associated exceptions to a file
. Security features

o O A

a. Define privileges needed to deploy and configure sender callback
b. With security, callback should only write eventlds and exceptions, i.e. no entry values should be written to disk.
. Add logging and statistics for callback

~

a. Log messages for gateway receiver for start time and results of retries
b. Add statistics and MBean for callbacks in-progress, completed, # and duration

New workflow for setting up WAN gateway using gfsh:
1. Create gateway receiver including new options for specifying # of retries and wait time between retries

2. Deploy jar on gateway sender(s) containing callback implementation
3. Create gateway sender with option to add callback

New API + Changes to existing APIs

Java Definition

The new GatewayEventFailureListener interface is defined like:

GatewayEventFailureListener

public interface GatewayEvent Fail urelLi stener extends CacheCal |l back {

| **

* Cal | back invoked on the GatewaySender when an event fails to be processed by the
* Gat ewayRecei ver

*

* @aram event The event that failed
*

* @ar am exception The exception that occurred
*/
voi d onFai |l ure( Gat ewayQueueEvent event, Throwabl e exception);

}

Example:

LoggingGatewayEventFailureListener
public class Loggi ngGat ewayEvent Fai |l ureLi st ener inplenments Gat ewayEvent Fai |l urelLi stener, Declarable {
private Cache cache;

public void onFail ure(Gat ewayQueueEvent event, Throwabl e exception) {
t hi s. cache. get Logger () . war ni ng("Loggi ngGat ewayEvent Fai | ureLi stener onFailure: region=" + event.getRegion().

getNane() + "; operation=" + event.getQperation() + "; key=" + event.getKey() + "; value=" + event.
get Deseri al i zedVal ue() + "; exception=" + exception);
}

public void initialize(Cache cache, Properties properties) {
t his.cache = cache;
}
}

This LoggingGatewayEventFailureListener will log warnings like:

[warning 2018/ 11/05 17:30:41.613 PST I n-1 <AckReader Thread for : Event Processor for GatewaySender_ny_3>

ti d=0x75] Loggi ngGat ewayEvent Fai |l ureLi stener onFailure: regi on=data; operati on=CREATE; key=8360; val ue=Trade
[i d=8360; cusi p=PVTL; shares=100; price=18]; exception=org.apache. geode. cache. persi stence.
PartitionOfflineException: Region /data bucket 73 has persistent data that is no longer online stored at these
locations: [...]



Java Configuration

GatewaySender

The GatewaySenderFactory adds the ability to add a GatewayEventFailureListener:

| **

* Sets the provided <code>Gat ewayEvent Fai | urelLi st ener</code> in this GatewaySender Factory.
*

* @aramlistener The <code>Gat ewayEvent Fail ureli st ener </ code>
*/
Gat ewaySender Fact ory set Gat ewayEvent Fai | ur eLi st ener (Gat ewayEvent Fai | ureLi stener |istener);

The GatewaySender adds the ability to get a GatewayEventFailureListener:

| *x*

* Returns this <code>Gat ewaySender' s</code> <code>CGat ewayEvent Fai | ur eLi st ener </ code>.
*

* @eturn this <code>Gat ewaySender' s</code> <code>CGat ewayEvent Fai | ur eLi st ener </ code>
*/
Gat ewayEvent Fai | ur eLi st ener get Gat ewayEvent Fai | ureLi stener();

Example:

Gat ewaySender sender = cache. creat eGat ewaySender Fact ory()
.setParall el (true)
. set Gat emayEvent Fai | ur eLi st ener (new Fi | eGat ewayEvent Fai | ureLi stener(new File(...)))
.create("In", 2);

GatewayReceiver

The GatewayReceiverFactory adds the ability to set retry attempts and wait time between retry attempts:

/**

* Sets the nunber of retry attenpts to apply failing events fromrenpte GatewaySenders
*

* @aramretryAttenpts The retry attenpts

*/

Gat ewayRecei ver Factory setRetryAttenpts(int retryAttenpts);

| **

* Sets the wait tinme between retry attenpts to apply failing events fromrenote GatewaySenders
*

* @aram wai t Ti meBet weenRetryAttenpts The wait tine in mlliseconds
*/
Gat ewayRecei ver Factory set Wit Ti mreBet weenRet ryAtt enpt s(1 ong wai t Ti neBet weenRetryAttenpts);

The GatewayReceiver adds the ability to get retry attempts and wait time between retry attempts:

/**

* Returns the nunmber of times to retry a failing event before throwi ng an exception.
*

* @eturn the nunmber of times to retry a failing event before throw ng an exception
*/
int getRetryAttenpts();

/**

* Returns the ampunt of time in mlliseconds to wait between attenpts to apply a failing event.
*

* @eturn the anpunt of tine in mlliseconds to wait between attenpts to apply a failing event
*

/
| ong get Wai t Ti mreBet weenRet ryAtt enpts();



Example:

Gat ewayRecei ver receiver = cache. creat eGat ewayRecei ver Factory()
.setRetryAttenpts(10)
. set Vi t Ti neBet weenRet r yAt t enpt s(100)
.create();

Gfsh Configuration

gateway-sender

The create gateway-sender command defines this new parameter:

Name Description

gateway-event-failure-listener | The fully qualified class name of GatewayEventFailureListener to be set in the GatewaySender

Example:

Cluster-1 gf sh>create gateway-sender --id=In --parallel=true --renote-distributed-systemid=2 --gateway-event-
failure-1istener=Loggi ngGat ewayEvent Fai | ureLi st ener
Menber | Status

gateway-receiver

The create gateway-receiver command defines these new parameters:

Name Description
retry-attempts The number of retry attempts for failed events processed by the GatewayReceiver
wait-time-between-retry-attempts = The amount of time to wait between retry attempts for failed events processed by the GatewayReceiver

Example:

Cluster-2 gfsh>create gateway-receiver --retry-attenpts=10 --wait-tine-between-retry-attenpts=100
Menber | Status | Message

In-1 | K | GatewayReceiver created on menber "In-1" and will listen on the port "5296"

XML Configuration

gateway-sender

The <gateway-sender> element defines the <gateway-event-failure-listener> sub-element. The <gateway-event-failure-listener> sub-element is like
any other Declarable.

Example:

<gat eway- sender id="...">
<gat eway- event-failure-1listener>
<cl ass- name>Fi | eGat ewayEvent Fai | ur eLi st ener </ cl ass- nane>
</ gat eway- event-failure-1istener>
</ gat eway- sender >

gateway-receiver

The <gateway-receiver> element defines the retry-attempts and wait-time-between-retry-attempts attributes.

Example:



<gat eway-receiver retry-attenpts="5" wait-time-between-retry-attenpts="100"/>

Risks and Unknowns

1. How to handle class not found exception for sender callback
2. Default behavior when no callback is provided for sender? - Should be same as current behavior

3. Backward compatibility behavior
a. old sender connected to new receiver using new options
b. new sender with callback implemented connected to old receiver
4. Sort out security privileges needed for deploying vs installing with sender vs reading values for failed events written to disk.

Potential Future Enhancements

® Ability to modify batch removal to remove specific events from the batch
® Ability to resend events saved in dead-letter queue

Current Implementation



Operation (create, update, destroy)

veration

xecuteOperation:]

n:]

pm queue on exception:]

Proposed Implementation



berOfRetries]
Operation (create, update, destroy)

yeration

executeOperation:]

imeBetweenRetries milliseconds

etry




	WAN Gateway Sender Callback API & Dead-letter queue example implementation

