
1.

2.
3.

4.
a.
b.

5.
a.
b.

1.

1.
a.

2.

a.
b.
c.
d.

3.

a.
b.

c.

WAN Gateway Sender Callback API & Dead-letter queue
example implementation

Overview
Goals
Not in Scope
Approach
New API + Changes to existing APIs

Java Definition
Java Configuration

GatewaySender
GatewayReceiver

Gfsh Configuration
gateway-sender
gateway-receiver

XML Configuration
gateway-sender
gateway-receiver

Potential Future Enhancements
Current Implementation
Proposed Implementation

Overview

The WAN replication feature allows 2 remote data centers, or 2 availability zones, to maintain data consistency. In the case where one data center cannot
process incoming events for any reason, the other data center should retain the failed events so that no data is lost. Currently if data center 1 (DC1) is able
to connect to data center 2 (DC2) and send it events, those events are removed from the queue on DC1 when the ack from DC2 is received, regardless of
what happens to them on DC2. This behavior is controlled by the internal system property REMOVE_FROM_QUEUE_ON_EXCEPTION which defaults to
true. Most common exceptions thrown from a receiving site include:

LowMemoryException - when one or more members is low on memory
CacheWriterException - when a CacheWriter before* method throws an exception
PartitionOfflineException - when all the members defining a persistent bucket are offline
RegionDestroyedException - when the region doesn't exist
Malformed data exception (unable to deserialize)

Goals

We will provide a mechanism for users to preserve events on the gateway sender that do not get successfully processed on the receiving data center. Our
example implementation will store these events on disk at the sending data center and notify the user what events did not get transmitted.

Deprecate (and later remove) the internal system property REMOVE_FROM_QUEUE_ON_EXCEPTION, but detect if it is set to false and support
existing behavior (infinite retries)
Create a new callback API that will be executed when an exception is returned with the acknowledgement from the receiver
Provide an example implementation of the callback that saves events with exceptions returned from the receiver in a 'dead-letter' queue on the
sender (on disk)
Add a new property for the gateway sender to specify the path to the custom implementation of the callback.

If no path is provided, use default, example implementation
if property is not specified, revert to existing behavior (removing events from the queue when ack is received, ignoring batch exceptions)

Add 2 new properties for the gateway receiver to control when to send the acknowledgement with the exceptions:
the number of retries for events failing with an exception
the wait time between retries

Not in Scope

Providing the ability to directly replay events from the dead-letter queue.

Approach

 Our current design approach is as follows:

Deprecate existing internal boolean system property: REMOVE_FROM_QUEUE_ON_EXCEPTION
Continue to support default behavior if boolean set to false by setting # retries on receiver to -1

Create new Java API

Define callback API for senders to set callback to dispatchers
If sender is configured with a callback, invoke the callback if batch exception occurs prior to batch removal
Implement a default callback API (see item 5 below)
Add properties on gateway receiver factory to specify # retries for a failed event and wait time between retries.

Modify Gfsh commands

Add option to gfsh ‘create gateway sender’ command to specify custom callback
Add options to gfsh ‘create gateway receiver’ command to set # retries and wait time between retries

3.

b.

c.

i.
ii.

4.
5.
6.

a.
b.

7.

a.
b.

1.
2.
3.

Store new options in cluster config

Sender: callback implementation
Receiver: # of retries and wait time between retries

Add support in cache.xml for specifying new callback for gateway sender and setting new options for gateway receiver
Create example implementation of Sender callback that writes event(s) and associated exceptions to a file
Security features

Define privileges needed to deploy and configure sender callback
With security, callback should only write eventIds and exceptions, i.e. .no entry values should be written to disk

Add logging and statistics for callback

Log messages for gateway receiver for start time and results of retries
Add statistics and MBean for callbacks in-progress, completed, # and duration

New workflow for setting up WAN gateway using gfsh:

Create gateway receiver including new options for specifying # of retries and wait time between retries
Deploy jar on gateway sender(s) containing callback implementation
Create gateway sender with option to add callback

New API + Changes to existing APIs

Java Definition

The new interface is defined like:GatewayEventFailureListener

GatewayEventFailureListener

public interface GatewayEventFailureListener extends CacheCallback {

 /**
 * Callback invoked on the GatewaySender when an event fails to be processed by the
 * GatewayReceiver
 *
 * @param event The event that failed
 *
 * @param exception The exception that occurred
 */
 void onFailure(GatewayQueueEvent event, Throwable exception);
}

Example:

LoggingGatewayEventFailureListener

public class LoggingGatewayEventFailureListener implements GatewayEventFailureListener, Declarable {

 private Cache cache;

 public void onFailure(GatewayQueueEvent event, Throwable exception) {
 this.cache.getLogger().warning("LoggingGatewayEventFailureListener onFailure: region=" + event.getRegion().
getName() + "; operation=" + event.getOperation() + "; key=" + event.getKey() + "; value=" + event.
getDeserializedValue() + "; exception=" + exception);
 }

 public void initialize(Cache cache, Properties properties) {
 this.cache = cache;
 }
}

This will log warnings like:LoggingGatewayEventFailureListener

[warning 2018/11/05 17:30:41.613 PST ln-1 <AckReaderThread for : Event Processor for GatewaySender_ny_3>
tid=0x75] LoggingGatewayEventFailureListener onFailure: region=data; operation=CREATE; key=8360; value=Trade
[id=8360; cusip=PVTL; shares=100; price=18]; exception=org.apache.geode.cache.persistence.
PartitionOfflineException: Region /data bucket 73 has persistent data that is no longer online stored at these
locations: [...]

Java Configuration

GatewaySender

The adds the ability to add a :GatewaySenderFactory GatewayEventFailureListener

/**
 * Sets the provided <code>GatewayEventFailureListener</code> in this GatewaySenderFactory.
 *
 * @param listener The <code>GatewayEventFailureListener</code>
 */
GatewaySenderFactory setGatewayEventFailureListener(GatewayEventFailureListener listener);

The adds the ability to get a :GatewaySender GatewayEventFailureListener

/**
 * Returns this <code>GatewaySender's</code> <code>GatewayEventFailureListener</code>.
 *
 * @return this <code>GatewaySender's</code> <code>GatewayEventFailureListener</code>
 */
GatewayEventFailureListener getGatewayEventFailureListener();

Example:

GatewaySender sender = cache.createGatewaySenderFactory()
 .setParallel(true)
 .setGatewayEventFailureListener(new FileGatewayEventFailureListener(new File(...)))
 .create("ln", 2);

GatewayReceiver

The adds the ability to set retry attempts and wait time between retry attempts:GatewayReceiverFactory

/**
 * Sets the number of retry attempts to apply failing events from remote GatewaySenders
 *
 * @param retryAttempts The retry attempts
 */
GatewayReceiverFactory setRetryAttempts(int retryAttempts);

/**
 * Sets the wait time between retry attempts to apply failing events from remote GatewaySenders
 *
 * @param waitTimeBetweenRetryAttempts The wait time in milliseconds
 */
GatewayReceiverFactory setWaitTimeBetweenRetryAttempts(long waitTimeBetweenRetryAttempts);

The adds the ability to get retry attempts and wait time between retry attempts:GatewayReceiver

/**
 * Returns the number of times to retry a failing event before throwing an exception.
 *
 * @return the number of times to retry a failing event before throwing an exception
 */
int getRetryAttempts();

/**
 * Returns the amount of time in milliseconds to wait between attempts to apply a failing event.
 *
 * @return the amount of time in milliseconds to wait between attempts to apply a failing event
 */
long getWaitTimeBetweenRetryAttempts();

Example:

GatewayReceiver receiver = cache.createGatewayReceiverFactory()
 .setRetryAttempts(10)
 .setWaitTimeBetweenRetryAttempts(100)
 .create();

Gfsh Configuration

gateway-sender

The command defines this new parameter:create gateway-sender

Name Description

gateway-event-failure-listener The fully qualified class name of GatewayEventFailureListener to be set in the GatewaySender

Example:

Cluster-1 gfsh>create gateway-sender --id=ln --parallel=true --remote-distributed-system-id=2 --gateway-event-
failure-listener=LoggingGatewayEventFailureListener
Member	Status
ny-1 | GatewaySender "ln" created on "ny-1"

gateway-receiver

The command defines these new parameters:create gateway-receiver

Name Description

retry-attempts The number of retry attempts for failed events processed by the GatewayReceiver

wait-time-between-retry-attempts The amount of time to wait between retry attempts for failed events processed by the GatewayReceiver

Example:

Cluster-2 gfsh>create gateway-receiver --retry-attempts=10 --wait-time-between-retry-attempts=100
Member	Status	Message
ln-1 | OK | GatewayReceiver created on member "ln-1" and will listen on the port "5296"

XML Configuration

gateway-sender

The element defines the sub-element. The sub-element is like <gateway-sender> <gateway-event-failure-listener> <gateway-event-failure-listener>
any other .Declarable

Example:

<gateway-sender id="...">
 <gateway-event-failure-listener>
 <class-name>FileGatewayEventFailureListener</class-name>
 </gateway-event-failure-listener>
</gateway-sender>

gateway-receiver

The element defines the and attributes.<gateway-receiver> retry-attempts wait-time-between-retry-attempts

Example:

1.
2.
3.

a.
b.

4.

<gateway-receiver retry-attempts="5" wait-time-between-retry-attempts="100"/>

Risks and Unknowns

How to handle class not found exception for sender callback
Default behavior when no callback is provided for sender? - Should be same as current behavior
Backward compatibility behavior

old sender connected to new receiver using new options
new sender with callback implemented connected to old receiver

Sort out security privileges needed for deploying vs installing with sender vs reading values for failed events written to disk.

Potential Future Enhancements

Ability to modify batch removal to remove specific events from the batch
Ability to resend events saved in dead-letter queue

Current Implementation

Proposed Implementation

	WAN Gateway Sender Callback API & Dead-letter queue example implementation

