
Migration to Wicket 8.0

Important notes before you start
Environment

Wicket 8.0 requires at least Java 8
Wicket 8.0 requires Servlet 3.1 (Jetty 9.2+, Apache Tomcat 8+, JBoss WildFly 10+)

API changes
Changes to org.apache.wicket.ajax.json.* WICKET-6287 - Getting issue details... STATUS
Deprecate org.apache.wicket.util.IProvider WICKET-6060 - Getting issue details... STATUS
Deprecate org.apache.wicket.util.IContextProvider WICKET-6118 - Getting issue details... STATUS
Deprecate org.apache.wicket.protocol.http.documentvalidation.HtmlDocumentValidator WICKET-6119 - Getting issue details... STATUS
Deprecate org.apache.wicket.model.AbstractReadOnlyModel
Deprecate org.apache.wicket.util.collections.ConcurrentHashSet.java WICKET-6783 - Getting issue details... STATUS
IGenericComponent's setter methods now return the current instance for method chaining
AjaxButton, AjaxSubmitLink and AjaxFallbackButton event callback methods no longer get form as second argument WICKET-6184 -
Getting issue details... STATUS
RequestCycle#find(Class<T>) returns java.util.Optional WICKET-6189 - Getting issue details... STATUS Migration to Wicket 8.0
#WICKET-6189
AjaxFallback** components now use java.util.Optional WICKET-6104 - Getting issue details... STATUS
AbstractChoice#getChoices() is 'final' now WICKET-6132 - Getting issue details... STATUS
ListenerInterfaceRequestHandler simplification WICKET-6137 - Getting issue details... STATUS
wantOnSelectionChangedNotifications moved to FormComponentUpdatingBehavior WICKET-6348 - Getting issue details... STATUS
Renderers are IDetachable now WICKET-6347 - Getting issue details... STATUS

Behavior changesMigration to Wicket 8.0#WICKET-6498
Application's IHeaderResponseDecorator WICKET-6498 - Getting issue details... STATUS
Component#onConfigure() verifies super call WICKET-6543 - Getting issue details... STATUS
FormComponentPanel delegates the call to #clearInput to its FormComponent children WICKET-6114 - Getting issue details... STATUS
Use DynamicJQueryResourceReference by default WICKET-6188 - Getting issue details... STATUS
AuthenticatedWebSession#singOut() now is an alias of Session#invalidate() WICKET-6228 - Getting issue details... STATUS
SecuritySettings#enforceMounts(true) now disables BookmarkableMapper WICKET-6161 - Getting issue details... STATUS
WicketObjects#sizeof() and #cloneObject() should not use IObjectCheckers WICKET-6334 - Getting issue details... STATUS
StatelessChecker throws StatelessCheckFailureException (a WicketRuntimeException) instead of IllegalStateException WICKET-6343 -
Getting issue details... STATUS
FeedbackCollector(Component) does not collect Session scoped feedback messages WICKET-6514 - Getting issue details... STATUS
AjaxFormSubmitBehavior no longer calls onsubmit() for multipart requests WICKET-6517 - Getting issue details... STATUS WICKET-
6868 - Getting issue details... STATUS

Removals
Drop Tomcat 7.x, Jetty 7.x and Jetty 9.0.x modules for Wicket Native WebSocket WICKET-5990 - Getting issue details... STATUS
WICKET-6304 - Getting issue details... STATUS
Drop Atmosphere module WICKET-6305 - Getting issue details... STATUS
Removed deprecated classes WICKET-6004 - Getting issue details... STATUS
Rendering API cleanup WICKET-6503 - Getting issue details... STATUS
User agent detection WICKET-6544 - Getting issue details... STATUS

Improvements
Casting helper Model#of(IModel<?> model)
IModel uses Java 8 default interface method for IDetachable#detach() WICKET-6115 - Getting issue details... STATUS
IRequestHandler uses Java 8 default interface method for IRequestHandler#detach() WICKET-6146 - Getting issue details... STATUS
ResourceStreamResource now receives Attributes as a parameter to its #getResourceStream() method WICKET-6113 - Getting issue
details... STATUS
Provide serializable versions of java.util.function.(Supplier|Consumer|Function|BiConsumer) WICKET-5991 - Getting issue details...
STATUS
Provide IModel implementations which make use of Java 8 lambdas and method references WICKET-5991 - Getting issue details...
STATUS
IGenericComponent is a mixin/trait interface WICKET-6117 - Getting issue details... STATUS
IModel is a @FunctionalInterface now
Provide LambdaColumn - IColumn implementation that uses java.util.function.Function WICKET-6121 - Getting issue details... STATUS
IColumn uses Java 8 default interface method for IColumn#isSortable() Git commit
IColumn provides methods for column's header rowspan/colspan WICKET-6095 - Getting issue details... STATUS
IRequestCycleListener notified of all IRequestHandlers WICKET-6129 - Getting issue details... STATUS
Add IPageManager#removePage(IManageablePage) WICKET-6336 - Getting issue details... STATUS
PageParameters might be user locale aware WICKET-6419 - Getting issue details... STATUS

Dependency updates

Important notes before you start

Wicket developers have worked to make migration from 7.x to 8.x as smooth as possible. Most of the time the required changes to migrate to the new
version will be spotted by the Java compiler producing a compile error. There are however some important changes (in the API or in the framework's
behavior) that won't result in a compilation problem but which are nonetheless very important and could lead to undesired changes in your application's
behavior. The following is a list of such changes. You are strongly invited to review them as part of the migration process:

Wicket 6 deprecated the usage of JS event names like "onclick","onblur", etc...in favor of their short version without 'on' prefix, i.e. "click","blur",
etc... Starting from this version the event old names won't work anymore.

RequestCycle.find(Class<T>) now returns an Optional<T> value. Keep this in mind if you used the following code to get the current
AjaxRequestTarget:

 if (RequestCycle.get().find(AjaxRequestTarget.class) == null) {
 // executed for non-ajax-request in Wicket 7
 // never executed in Wicket 8
 ...
 }

See for more detailsMigration to Wicket 8.0#WICKET-6189

Before Wicket 8 users used to create a custom implementation of IHeaderResponseDecorator to place JavaScript items inside page body:

@Override

public void init()

{

 setHeaderResponseDecorator(new JavaScriptToBodyCustomResponseDecorator("footer"));

}

This code doesn't work anymore. See for more detailsMigration to Wicket 8.0#WICKET-6498

Environment

Wicket 8.0 requires at least Java 8

Wicket 8.0 requires Servlet 3.1 (Jetty 9.2+, Apache Tomcat 8+, JBoss WildFly 10+)

Ajax multipart uploads (e.g. FileUploadField in Ajax submits) require , for Internet Explorer https://developer.mozilla.org/en-US/docs/Web/API/FormData

that implies version 10 or higher. - WICKET-6517 Getting issue details... STATUS

API changes

Changes to org.apache.wicket.ajax.json.* - WICKET-6287 Getting issue details... STATUS

Because of license issues all json.org classes in that package have been removed and open-json () is used as new https://github.com/tdunning/open-json
dependency. Basic functionalities can be reused by only changing the imports from org.apache.wicket.ajax.json.* to org.json.*, org.apache.wicket.ajax.json.
JsonFunction has been renamed to org.apache.wicket.ajax.json.JSONFunction and some classes are deleted without any replacements (example: org.
json.HTTP)

Deprecate org.apache.wicket.util.IProvider - WICKET-6060 Getting issue details... STATUS

Replace it with standard Java 8 java.util.function.Supplier<T> which is virtually identical.

Deprecate org.apache.wicket.util.IContextProvider - WICKET-6118 Getting issue details... STATUS

Replace IContextProvider<T, C> with standard Java 8 java.util.function.Function<C, T> which is virtually identical.

As a consequence IPageManagerProvider, IPageRendererProvider and IRequestCycleProvider now override #apply() method instead of #get().

Deprecate org.apache.wicket.protocol.http.documentvalidation.HtmlDocumentValidator

 - WICKET-6119 Getting issue details... STATUS

Tests based on HtmlDocumentValidator are very fragile. They start to fail as soon as there is a single character change somewhere in the page markup.

We believe that there are very few users of this API. It is recommended to use TagTester and WicketTestCase#executeTest() instead.
Deprecate org.apache.wicket.model.AbstractReadOnlyModel

Use an anonymous instance of IModel instead. Since Wicket 8.0 IModel doesn't require providing implementation of #setObject(Object) method.

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=84804436#MigrationtoWicket8.0-WICKET-6189
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=84804436#MigrationtoWicket8.0-WICKET-6498
https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://issues.apache.org/jira/browse/WICKET-6517
https://issues.apache.org/jira/browse/WICKET-6287
https://github.com/tdunning/open-json
https://issues.apache.org/jira/browse/WICKET-6060
https://issues.apache.org/jira/browse/WICKET-6118
https://issues.apache.org/jira/browse/WICKET-6119

Deprecate org.apache.wicket.util.collections.ConcurrentHashSet.java

 - WICKET-6783 Getting issue details... STATUS

ConcurrentHashMap.newKeySet() should be used instead

IGenericComponent's setter methods now return the current instance for method chaining

All specialization classes return their type.

AjaxButton, AjaxSubmitLink and AjaxFallbackButton event callback methods no longer get form as second argument

 - WICKET-6184 Getting issue details... STATUS

For consistency with other components and the new lambda support, the submitted form is no longer passed as argument to callback methods (e.g.
#onSubmit(), #onClick()) of AjaxButton, AjaxSubmitLink and AjaxFallbackButton. You can call #getForm() instead.

RequestCycle#find(Class<T>) returns java.util.Optional - WICKET-6189 Getting issue details... STATUS Migration

to Wicket 8.0#WICKET-6189

Code calling RequestCycle#find(Class<T>) has to check whether a matching IRequestHandler is found. This is now enforced by returning an Optional<T>:

RequestCycle.find(Class<T>)

getComponent().getRequestCycle().find(AjaxRequestTarget.class).ifPresent(target -> target.add(this));

Pitfall when comparing with null

if (cycle.find(AjaxRequestTarget.class) == null) {
 // this is *never* executed since #find() always returns an Optional
}

if (cycle.find(AjaxRequestTarget.class) != null) {
 // this is *always* executed since #find() always returns an Optional
}

AjaxFallback** components now use java.util.Optional - WICKET-6104 Getting issue details... STATUS

All AjaxFallback** components and the containers which use internally AjaxFallback** components, like havAjaxTabbedPanel, RatingPanel and TableTree,
e been reworked to pass Optional<AjaxRequestTarget> instead of just AjaxRequestTarget to their onXyz() callback methods. This way the application
developer should not forget to check that the AjaxRequestTarget is not null.

AbstractChoice#getChoices() is 'final' now - WICKET-6132 Getting issue details... STATUS

AbstractChoice#getChoices() has been made final. If the application needs to provide different choices for each render then it should override
AbstractChoice#getChoicesModel() instead. The application code would be almost the same as before, it will just need to wrap the final List result in an
IModel, most probably ListModel.

ListenerInterfaceRequestHandler simplification - WICKET-6137 Getting issue details... STATUS

RequestListenerInterface was removed:

IResourceListener, IBehaviorListener, IOnChangeListener, ILinkListener are replaced by the generic method IRequestListener#onRequest()
ListenerInterfaceRequestHandler was renamed to ListenerRequestHandler
Component's and Behavior's #canCallListenerInterface() were renamed to #canCallListener()
PageSettings#getCallListenerInterfaceAfterExpiry() was renamed to #getCallListenerAfterExpiry.

Silent API break

During migration you should check your old code for places where the AjaxRequestCycle (now an Optional<AjaxRequestTarget>) is compared
with null:

https://issues.apache.org/jira/browse/WICKET-6783
https://issues.apache.org/jira/browse/WICKET-6184
https://issues.apache.org/jira/browse/WICKET-6189
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=84804436#MigrationtoWicket8.0-WICKET-6189
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=84804436#MigrationtoWicket8.0-WICKET-6189
https://issues.apache.org/jira/browse/WICKET-6104
https://issues.apache.org/jira/browse/WICKET-6132
https://issues.apache.org/jira/browse/WICKET-6137

A Component or Behavior can now implement IRequestListener once only, thus removing the need to include an identifier (e.g. "ILinkListener") in the URL.

If you implemented IResourceListener previously, you have to override IRequestListener#rendersPage() now to return false.

wantOnSelectionChangedNotifications moved to FormComponentUpdatingBehavior

 - WICKET-6348 Getting issue details... STATUS

Change notification was moved from CheckBox, DropDownChoice, RadioChoice, CheckGroup/Check and RadioGroup/Radio into a new behavior
FormComponentUpdatingBehavior.

Instead of subclasses the component, this behavior can now be added to the component:

FormComponentUpdatingBehavior

// Wicket 7.x
new CheckBox("id", model) {
 protected boolean wantOnSelectionChangedNotifications() {
 return true;
 }

 protected void onSelectionChanged(Boolean newSelection) {
 // do something, page will be rerendered;
 }
};

// Wicket 8.x
new CheckBox("id", model)
.add(new FormComponentUpdatingBehavior() {
 protected void onUpdate() {
 // do something, page will be rerendered;
 }

 protected void onError(RuntimeException ex) {
 super.onError(ex);
 }
});

As with AjaxFormComponentUpdatingBehavior any error during processing of the form component can now be handled in #onError().

Renderers are IDetachable now - WICKET-6347 Getting issue details... STATUS

Renderers (IChoiceRendere, IOptionRenderer and IAutoCompleteRenderer now take part in detachment as other Wicket concepts like components and
models. The owning component is responsible to detach it.

Behavior changesMigration to Wicket 8.0#WICKET-6498

Application's IHeaderResponseDecorator - WICKET-6498 Getting issue details... STATUS

Before WICKET-6498 users used to create a custom implementation of IHeaderResponseDecorator to place JavaScript items inside page body:

 @Override
 public void init()
 {
 setHeaderResponseDecorator(new JavaScriptToBodyCustomResponseDecorator("footer"));
 }

Each Application has an IHeaderResponseDecorator now by default, which decorates header responses with a ResourceAggregator. Projects using their
own response decoration (e.g. via JavaScriptFilteredIntoFooterHeaderResponse) have to make sure, that each response is explicitly decorated with a
ResourceAggregator too, since Application no longer does it implicitly, e.g.:

https://issues.apache.org/jira/browse/WICKET-6348
https://issues.apache.org/jira/browse/WICKET-6347
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=84804436#MigrationtoWicket8.0-WICKET-6498
https://issues.apache.org/jira/browse/WICKET-6498

Header response decoration

setHeaderResponseDecorator(response -> {
 return new ResourceAggregator(new JavaScriptFilteredIntoFooterHeaderResponse(response, "footer"));
});

Component#onConfigure() verifies super call - WICKET-6543 Getting issue details... STATUS

Component verifies that subclasses overriding #onConfigure() delegate to their parent implementation now, as it does for other callbacks like #onInitialize().
Make sure that you call super.onConfigure() if you haven't done so already,

FormComponentPanel delegates the call to #clearInput to its FormComponent children

 - WICKET-6114 Getting issue details... STATUS

FormComponent#clearInput() has been made non-final, so that now containers like FormComponentPanel could override this method and call #clearInput()
on its children of type FormComponent.

Use DynamicJQueryResourceReference by default - WICKET-6188 Getting issue details... STATUS

By using org.apache.wicket.resource.DynamicJQueryResourceReference Wicket will contribute jQuery ver. 2.x for modern browsers and ver. 1.x when the
request is done by Internet Explorer older than ver. 9.

AuthenticatedWebSession#singOut() now is an alias of Session#invalidate()

 - WICKET-6228 Getting issue details... STATUS

The old behavior of #signOut() didn't bring much value and caused confusion to some users. Now it is just an alias of Session#invalidate().
SecuritySettings#enforceMounts(true) now disables BookmarkableMapper

 - WICKET-6161 Getting issue details... STATUS

If this setting is enabled then a page could not be requested via . A page has to be explicitly mounted at /wicket/bookmarkable/com.example.PageName
to be able to request it.MyApplication#init()

WicketObjects#sizeof() and #cloneObject() should not use IObjectCheckers

 - WICKET-6334 Getting issue details... STATUS

WicketObjects#cloneObject() and #sizeof() now create a new instance of JavaSerializer to clone or take the size of an object respectively.

If the configured ISerializer in the IFrameworkSettings is not an instance of JavaSerializer then it is used as is!

StatelessChecker throws StatelessCheckFailureException (a WicketRuntimeException) instead of IllegalStateException

 - WICKET-6343 Getting issue details... STATUS

StatelessChecker now provides an overrideable method named #fail() that accepts an instance of StatelessCheckFailureException. This method is being
called

whenever the checker finds a problem. By default the exception is being thrown but the application may decide to do something else with it, e.g. to log it.
FeedbackCollector(Component) does not collect Session scoped feedback messages

 - WICKET-6514 Getting issue details... STATUS

Using FeedbackCollector(Component) constructor will collect only the messages related to the passed Component but not any Session scoped feedback
messages.

To collect also the Session scoped ones the application code should use FeedbackCollector(Component, true).

AjaxFormSubmitBehavior no longer calls onsubmit() for multipart requests

 - WICKET-6517 Getting issue details... STATUS - WICKET-6868 Getting issue details... STATUS

Ajax multipart requests are now done via Ajax like their non-multipart counterparts. Therefore onsubmit() is no longer called via JS on the form by default.
AjaxFormSubmitBehavior offers an alternative via overriding and returning true from #shouldTriggerJavaScriptSubmitEvent(), which will trigger an 'submit'
event on the form regardless of multipart or normal Ajax requests.

https://issues.apache.org/jira/browse/WICKET-6543
https://issues.apache.org/jira/browse/WICKET-6114
https://issues.apache.org/jira/browse/WICKET-6188
https://issues.apache.org/jira/browse/WICKET-6228
https://issues.apache.org/jira/browse/WICKET-6161
https://issues.apache.org/jira/browse/WICKET-6334
https://issues.apache.org/jira/browse/WICKET-6343
https://issues.apache.org/jira/browse/WICKET-6514
https://issues.apache.org/jira/browse/WICKET-6517
https://issues.apache.org/jira/browse/WICKET-6868

Removals

Drop Tomcat 7.x, Jetty 7.x and Jetty 9.0.x modules for Wicket Native WebSocket

 - WICKET-5990 Getting issue details... STATUS - WICKET-6304 Getting issue details... STATUS

Since Wicket 8.x requires Servlet 3.1 the modules for native websocket support for Jetty 7.x/9.0.x have been dropped.

Users are advised to use module with Jetty 9.2+, Apache Tomcat 7/8, JBoss WildFly.wicket-native-websocket-javax

Drop Atmosphere module - WICKET-6305 Getting issue details... STATUS

The experimental integration for Atmosphere has been removed because of stability issues.

Users are advised to use module with Jetty 9.2+, Apache Tomcat 7/8, JBoss WildFly.wicket-native-websocket-javax

Removed deprecated classes - WICKET-6004 Getting issue details... STATUS

Several deprecated classes where removed:

IMountedRequestMapper and implementation
ZeroPaddingIntegerConverter
WildcardCollectionModel, WildcardListModel, WildcardSetModel - use the corresponding classes without "Wildcard"-prefix instead
PropertyResolver.IClassCache is replaced by PropertyResolver.IPropertyLocato

Rendering API cleanup - WICKET-6503 Getting issue details... STATUS

With several internal methods were removed from the Component API (i.e. those marked with "THIS METHOD IS NOT PART OF THE WICKET-6503
WICKET PUBLIC API. DO NOT USE IT!"). #onAfteRenderChildren() was removed too, if you had overriden it use #afterRender() instead.

#renderPart() is now the main entrance to render a single component - the caller has to make sure that #beforeRender() has been called on it before.

User agent detection - WICKET-6544 Getting issue details... STATUS

WICKET-6544 deprecates Wicket's user agent detection, as the API and implementation was not sufficient for modern browsers - it will be removed in
Wicket 9.

Users are encouraged to utilize https://github.com/nielsbasjes/yauaa

Improvements

Casting helper Model#of(IModel<?> model)

The helper method for casting of models was moved from Model to IModel#of(IModel<?>).

IModel uses Java 8 default interface method for IDetachable#detach()

 - WICKET-6115 Getting issue details... STATUS

For convenience IModel class provides a do-nothing implementation of IDetachable#detach() method, so custom implementations are not required to
implement it when not needed.

IRequestHandler uses Java 8 default interface method for IRequestHandler#detach()

 - WICKET-6146 Getting issue details... STATUS

For convenience IRequestHandler class provides a do-nothing implementation of its #detach() method, so custom implementations are not required to
implement it when not needed.

ResourceStreamResource now receives Attributes as a parameter to its #getResourceStream() method

 - WICKET-6113 Getting issue details... STATUS

For access to the response, the request and its parameters now ResourceStreamResource#getResourceStream() receives an instance of org.apache.
wicket.request.resource.IResource.Attributes.

Provide serializable versions of java.util.function.(Supplier|Consumer|Function|BiConsumer)

 - WICKET-5991 Getting issue details... STATUS

https://issues.apache.org/jira/browse/WICKET-5990
https://issues.apache.org/jira/browse/WICKET-6304
https://issues.apache.org/jira/browse/WICKET-6305
https://issues.apache.org/jira/browse/WICKET-6004
https://issues.apache.org/jira/browse/WICKET-6503
https://issues.apache.org/jira/browse/WICKET-6503
https://issues.apache.org/jira/browse/WICKET-6544
https://issues.apache.org/jira/browse/WICKET-6544
https://github.com/nielsbasjes/yauaa
https://issues.apache.org/jira/browse/WICKET-6115
https://issues.apache.org/jira/browse/WICKET-6146
https://issues.apache.org/jira/browse/WICKET-6113
https://issues.apache.org/jira/browse/WICKET-5991

java.util.function.Consumer and other classes are not serializable and this makes them unusable in stateful Wicket pages. For this reason Wicket
provides org.apache.wicket.model.lambda.WicketSupplier, org.apache.wicket.model.lambda.WicketConsumer, org.apache.wicket.model.lambda.
WicketFunction and org.apache.wicket.model.lambda.WicketBiFunction. Those interfaces should be used in method signatures where Java 8 lambdas or
method references could be used. At the call site there is nothing specific to be done, i.e. just use lambdas and method references without any casting.

Provide IModel implementations which make use of Java 8 lambdas and method references

 - WICKET-5991 Getting issue details... STATUS

Wicket provides a new implementation of IModel which uses Java 8 consumers and suppliers, i.e. may be used with lambda or method references

org.apache.wicket.model.LambdaModel

LambdaModel

Person person = ...;
IModel<String> personNameModel = new LambdaModel<>(
 () -> person.getName(),
 (name) -> person.setName(name));

org.apache.wicket.model.LambdaModel with method references

LambdaModel.of()

Person person = ...;
IModel<String> personNameModel = LambdaModel.of(person::getName, person::setName);

org.apache.wicket.model.LambdaModel can be created with a target model too - note the upper-case 'P' for the function references:

LambdaModel.of(target, ...)

IModel<Person> person = ...;
IModel<String> personNameModel = LambdaModel.of(person, Person::getName, Person::getName);

IGenericComponent is a mixin/trait interface - WICKET-6117 Getting issue details... STATUS

IGenericComponent uses Java 8 default methods to implement #setModel(IModel<T>), #getModel(), #setModelObject(T) and #getModelObject() by
delegating to the respective get/setDefaultModel[Object] methods.

This way it could be easily used by any Component by just implementing it.

IModel is a @FunctionalInterface now
IModel provides default implementations of #detach() (do nothing) and #setObject(T) (throws UnsupportedOperationException), so it is possible to use it
as a functional interface.

IModel as functional interface

new Link<String>("", () -> "abc") {
 @Override
 public void onClick()
 {
 // ...
 }
};

Label label = new Label("id", person::getName); // the method reference is actually IModel<String>

Provide LambdaColumn - IColumn implementation that uses java.util.function.Function

 - WICKET-6121 Getting issue details... STATUS

https://issues.apache.org/jira/browse/WICKET-5991
https://issues.apache.org/jira/browse/WICKET-6117
https://issues.apache.org/jira/browse/WICKET-6121

LambdaColumn

 columns.add(new LambdaColumn<Contact, String>(new Model<>("Last Name"), "lastName", Contact::getLastName)

IColumn uses Java 8 default interface method for IColumn#isSortable() Git commit
For convenience IColumn class provides an implementation of #isSortable() method that uses #getSortProperty() to decide. Just like AbstractColumn did
until Wicket 7.

IColumn provides methods for column's header rowspan/colspan - WICKET-6095 Getting issue details... STATUS

New methods have been added to help manipulating the tables' headers: IColumn#getHeaderColspan() and IColumn#getHeaderRowSpan(). Both of them
return 1, so the header cells do not span by default.

IRequestCycleListener notified of all IRequestHandlers - WICKET-6129 Getting issue details... STATUS

IRequestCycleListeners are now notified of the execution of IRequestHandlers, including those scheduled by other handlers, those replacing other all
handlers, and any handler executed due to an exception:

#onRequestHandlerResolved(RequestCycle, IRequestHandler) - any handler to be executed
#onRequestHandlerExecuted(RequestCycle, IRequestHandler) - any handler successfully executed without an exception

RequestHandlerStack is now renamed to RequestHandlerExecutor.

Add IPageManager#removePage(IManageablePage) - WICKET-6336 Getting issue details... STATUS

With this method now an application may explicitly expire pages selectively.

PageParameters might be user locale aware - WICKET-6419 Getting issue details... STATUS

By overriding org.apache.wicket.request.mapper.AbstractMapper#resolveLocale(), e.g. like in the , the application may use the session/request's test case
locale while parsing numbers with PageParameters#get("someNumericParameter").toInt().

Dependency updates

All libraries on which Wicket modules depend are updated to their latest stable versions.
The most notable ones are:

Spring Framework 4.3.x
Jetty 9.4.x (used in the Quickstart application archetype and for internal Wicket testing)
Mockito 2.x (for internal testing)
Depend on com.github.openjson:openjson instead of using local copies of org.json/com.tdunning:open-json

https://git1-us-west.apache.org/repos/asf?p=wicket.git;a=commit;h=e1661fe6
https://issues.apache.org/jira/browse/WICKET-6095
https://issues.apache.org/jira/browse/WICKET-6129
https://issues.apache.org/jira/browse/WICKET-6336
https://issues.apache.org/jira/browse/WICKET-6419
https://github.com/apache/wicket/blob/04c96171e242d09fc34d4f93b1ca97f8fc61a67c/wicket-core/src/test/java/org/apache/wicket/core/request/mapper/LocaleAwarePageParametersTest.java

	Migration to Wicket 8.0

