
1.  
2.  
3.  

4.  

1.  
a.  

b.  

c.  

d.  

e.  

f.  
2.  

a.  

b.  

c.  

3.  
a.  
b.  
c.  

4.  
a.  
b.  

Review Checklist
Overview
Review Checklist defines a set of actions every reviewer must check before approving merge of a certain feature. Please make sure to follow these rules 
when submitting a patch. Otherwise it is likely to be rejected.

Requirements levels are identical to ones from RFC 2119 [1]:

MUST - This word mean that the definition is an absolute requirement of the specification.
MUST NOT - This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute prohibition of the specification.
SHOULD - This word mean that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must 
be understood and carefully weighed before choosing a different course.
SHOULD NOT - This phrase mean that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or 
even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this 
label.

Checklist
API

API compatibility  be maintained between minor releases. Do not remove existing API interfaces, classes, and methods or change MUST
their signatures, deprecate them instead
Default behavior  be changed between minor releases, unless absolutely needed. If a change is made, it  be SHOULD NOT MUST
described in "Migration Guide" [2]
New operation  be well-documented in code (javadoc, dotnetdoc): documentation must contain method's purpose, description of MUST
parameters and how their values affect the outcome, description of return value and it's default, behavior in negative cases, interaction 
with other operations and components
API parity between Java and .NET platforms  be maintained when operation makes sense on both platforms. If method cannot SHOULD
be implemented in a platform immediately, new JIRA ticket  be created and linked to current ticketMUST
API parity between thin clients (Java, .NET)  be maintained when operation makes sense on several clients. If method cannot SHOULD
be implemented in a client immediately, new JIRA ticket  be created and linked to current ticketMUST
All exceptions thrown to a user  have explanation how to resolve, workaround or debug an errorSHOULD

Compatibility
Persistence backward compatibility  be maintained between minor releases. It should be possible to start newer version on data MUST
files created by the previous version
Thin client forward and backward compatibility  be maintained between two consecutive minor releases. If compatibility cannot SHOULD
be maintained it  be described in "Migration Guide" [2]MUST
JDBC and ODBC forward and backward compatibility  be maintained between two consecutive minor releases. If compatibility SHOULD
cannot be maintained it  be described in "Migration Guide" [2]MUST

Tests
New functionality  be covered with unit tests for both positive and negative use cases MUST
Patch for a bug  have a test confirming that the bug is fixedSHOULD
All test suites  be run on TeamCity [3] before merge to master, there  be any test failures. Not important test failures MUST MUST NOT
should be muted and handled according to [4] process.

Misc
Code style  be followed as per Ignite's Coding Guidelines [5].MUST
Implementor   decide whether   flag should be left  , reviewer  check whether decision was correct or not.MUST Docs Requiered ON MUST

[1] https://www.ietf.org/rfc/rfc2119.txt

[2] https://github.com/apache/ignite/blob/master/MIGRATION_GUIDE.txt

[3] https://ci.ignite.apache.org/

[4] Make Teamcity Green Again

[5] Coding Guidelines

https://www.ietf.org/rfc/rfc2119.txt
https://github.com/apache/ignite/blob/master/MIGRATION_GUIDE.txt
https://ci.ignite.apache.org/
https://cwiki.apache.org/confluence/display/IGNITE/Make+Teamcity+Green+Again
https://cwiki.apache.org/confluence/display/IGNITE/Coding+Guidelines

	Review Checklist

