
1.
2.

3.

4.
5.
6.

Vectorized Execution Introduction

HAWQ Vectorized Execution Design:
Vectorized Execution(VE) is an advanced technique in database query execution stage. HAWQ is supported via vexecutor plugin/extension, please refer
to the design doc:

HAWQ Vectorized Execution design

Installation and Activation
Make sure HAWQ compilation and installation success.
Check if is installed into HAWQ execution directory. If not, you can execute "make ;make install" in vexecutor.so contrib/vexecutor directory to
install it.
Add library name "vexecutor" to "shared_preload_libraries" in postgresql.conf which has to copies allocated in master and segment data
directories respectively. Make sure both of them is assigned. (E.g. postgresql.conf: shared_preload_libraries = 'vexecutor')
Restart HAWQ cluster
Execute "create_udv.sql" with psql. then some vectorized data types and vectorized aggregate functions will be add to HAWQ.
How to remove Vectorized Execution:

Delete metadata by executing "clean_udv.sql" in psql.

Remove 'vexecutor' from shared_preload_libraries in postgresql.conf
Restart HAWQ cluster

Performance Comparation

Conclusion

Vectorized execution is faster than normal execution at least two times in both AO and Parquet table. Some queries can reach 8 times acceleration. You
can find the performance test tables structure and queries as follow.

Table Structure

Create Append only and Parquet tables: test_ao, test_parquet

Table Name: test_ao

Column Type

a integer

b integer

Table Name: test_parquet

Column Type

a integer

b integer

Create Parquet table "lineitem":

Column Type

l_orderkey bigint

l_partkey integer

l_suppkey integer

l_linenumber integer

https://15721.courses.cs.cmu.edu/spring2017/papers/21-vectorization1/p5-sompolski.pdf
https://issues.apache.org/jira/secure/attachment/12909908/hawq_vectorized_execution_design_v0.1.pdf
http://vexecutor.so

l_quantity double precision

l_extendedprice double precision

l_discount double precision

l_tax double precision

l_returnflag integer

l_linestatus integer

l_shipdate date

l_commitdate date

l_receiptdate date

l_shipinstruct character(25)

l_shipmode character(10)

l_comment character varying(44)

Please check the performance results as below:

AO Talbe

SQL Non-Vec

(ms)

VE

(ms)

select count(a),avg(a),sum(b) from test_ao; 4075 1806

select count(a),avg(a),sum(b) from test_ group by a;ao 5713 3347

select count(a),avg(a),sum(b) from test_ group by b;ao 5755 3077

select count(a) from test_ ;ao 2595 1225

select avg(a) from test_ ;ao 2511 1218

select sum(a) from test_ ;ao 2426 1208

select count(a) from test_ group by a;ao 3442 2623

select avg(a) from test_ group by a;ao 3565 2626

select sum(b) from test_ group by a;ao 3845 3241

PARQUET Table

SQL Non-Vec

(ms)

VE

(ms)

select count(a),avg(a),sum(b) from ;test_parquet 8632 995

select count(a),avg(a),sum(b) from group by a;test_parquet 11748 4637

select count(a),avg(a),sum(b) from group by b;test_parquet 11628 4072

select count(a) from ;test_parquet 4887 673

select avg(a) from ;test_parquet 5666 620

select sum(a) from ;test_parquet 4882 625

select count(a) from group by a;test_parquet 7571 3886

select avg(a) from group by a;test_parquet 8268 3861

select sum(b) from group by a;test_parquet 8456 4374

l_returnflag,

l_linestatus,

sum(l_quantity) as sum_qty,

sum(l_extendedprice) as sum_base_price,

sum(l_extendedprice (1 - l_discount)) as sum_disc_price,

sum(l_extendedprice (1 - l_discount) (1 + l_tax)) as sum_charge,

avg(l_quantity) as avg_qty,

avg(l_extendedprice) as avg_price,

avg(l_discount) as avg_disc,

count() as count_order

from

lineitem

where

l_shipdate <= '1998-12-01'::date - 65

group by

l_returnflag,

l_linestatus

order by

l_returnflag,

l_linestatus;

109060.121 32056.300

select sum(l_extendedprice * l_discount) as revenue

from

lineitem

where

l_shipdate >= '1997-01-01'::date

and l_shipdate < '1997-01-01'::date + 365

and l_discount > (0.06 - 0.01)

and l_discount < (0.06 + 0.01)

and l_quantity < 24;

17121.384 9015.241

How to create new vectorized type in HAWQ?

For the original version of HAWQ vectorized execution, it only supports six type in [vtype.h/c] for vectorized execution. The README file represents lots of
information relevant to custom your own type for vectorized execution. However, if you still struggle with the coding process, this document may help you
pave the way to familiar with type customization. We will provide an example as follow. The date type is chosen as a vtype internal to build a new
vectorized execution feature, and all detail and practice experiences are presented in this doc step by step. You can find the type and relevant expression
function implementation in [vtype_ext.h/c].

I. Vectorizable type

Before a new vectorized type implementation initiated, an original type must be selected, which is named as internal type in this example. At present, the
internal type length must smaller than Datum. The reason is that reference depended type serialization methods are not supported, which may require
huge amounts of memory resource if support those in vectorized execution. Consequently, if you want to patch this feature, you should do some further
workload, including refactor serialization function and manage type required memory manually. Since the date type satisfies the requirement, and
frequently appear in database case, we extend it to the vectorized version named vdateadt.

II. Type defination in SQL script

For type definition, we normally execute four SQL querys as follow:

CREATE TYPE vdateadt;

CREATE FUNCTION vdateadtin(cstring) RETURNS vdateadt AS ' 'vexecutor.so LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION vdateadtout(vdateadt) RETURNS cstring AS ' 'vexecutor.so LANGUAGE C IMMUTABLE STRICT;

CREATE TYPE vdateadt (INPUT = vdateadtin, OUTPUT = vdateadtout, element = date , storage=external);

The function vdateadtin and vdateadtout is the input and output casting function for the vdateadt type separately. The declare script include the function
formal parameter and return type, as well as specific library name which HAWQ can find the function. When the declaration query has been executed, the
new type metadata is recorded in HAWQ pg_type catalog table. You can query the detail using SELECT * FROM pg_type WHERE typname='vdateadt';

Secondly, the new type related expression function need to declare. For date type, it holds date_mi function to process date minus date expression. As
the affine function in vdateadt, we declare function vdataadt_mi to handle vdateadt - vdateadt calculation. However, for some queries (e.g. SELECT col1
from tab1 WHERE vdate - '1998-08-02' > 20), the vdateadt - date expression is required. Since that, we declare another function named vdateadt_mi_date.
These two function declaration query is posted as follow:

CREATE FUNCTION vdateadt_mi(vdateadt, vdateadt) RETURNS vint4 AS ' 'vexecutor.so LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR - (leftarg = vdateadt, rightarg = vdateadt, procedure = vdateadt_mi, commutator = -);

CREATE OPERATOR - (leftarg = vdateadt, rightarg = date, procedure = vdateadt_mi_dateadt, commutator = -);

CREATE FUNCTION vdateadt_pli_int4(vdateadt, int4) RETURNS vdateadt AS ' 'vexecutor.so LANGUAGE C IMMUTABLE STRICT;

Like the case we show above, all the expression declaration is wrote in create_type.sql.

III. Type implementation

As the declaration notice, all function should define and implement in library vexecutor. The header file of vtype_ext.h is included in vexecutor.h and vcheck
.h. Thus, HAWQ query dispatcher and library can recognize the date type vectorizable.

For example, vdateadt_pli_int4 has been defined as follow.

PG_FUNCTION_INFO_V1(vdateadt_pli_int4);

Datum vdateadt_pli_int4(PG_FUNCTION_ARGS)

{

 int size = 0;

 int i = 0;

 vdateadt* arg1 = PG_GETARG_POINTER(0);

 int arg2 = PG_GETARG_INT32(1);

 vdateadt* res = buildvint4(BATCHSIZE, NULL);

 size = arg1->dim;

 while(i < size)

 {

 res->isnull[i] = arg1->isnull[i] ;

 if(!res->isnull[i])

 res->values[i] = Int32GetDatum((DatumGetDateADT(arg1->values[i])) + arg2);

 i++;

 }

 res->dim = arg1->dim;

 PG_RETURN_POINTER(res);

}

Depends on the SQL script declare in the previous step. HAWQ dispatch two parameters into when the function is invoked. The MARCO PG_FUNCTION_I
NFO_V1 notice the compiler how to compile and load the function into the system. isnull attribute is an array of bool to indicate every internal slot if is null.
The dim attribute indicates the number of values which contain in the vtype.

http://vexecutor.so
http://vexecutor.so
http://vexecutor.so
http://vexecutor.so

All expression functions are defined in vtype_ext.c. For convenience, you can use MARCO function to implement, since most calculation functions logic
are same but operator different.

IV. Install

After finish coding, compile and install the library first. HAWQ require restart to recognize new thrid-part library load. the library name should record into loc
al_preload_libraries parameter postgresql.conf file both master and segment data directories.

Executing \i create_type.sql all vecotrized type will be created in HAWQ, and open vectorized_executor_enable GUC value to on trigger VE work.

V. Test

We are glad to accept new feature into HAWQ. If you complete a new type or has some enlightenment job, I appreciate it and you can create a PR in
HAWQ project in GitHub. We will review and merge it if it is helpful and bug-free.

However, before publishing your code out, you should test your coding in our test framework. For the VE feature test, it is located in src/test/feature
/vexecutor directory. Add your own test case and proof everything right.

All in all, this is a brief introduction for vtype extension.

	Vectorized Execution Introduction

