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Quick Start Guide for Developers
blocked URL

This guide explains all of the elements needed to successfully develop and plug in a new MADlib  module.®

Prerequisites
Docker Image
Adding a New Module
Adding an Iterative UDF

The files for the examples in this guide can be found in the hello world folder of the source code repository.

Prerequisites
Install MADlib by following the steps in the   or use the  below.Installation Guide for MADlib Docker image instructions

MADlib source code is organized such that the core logic of a machine learning or statistical module is located in a common location, and the database-
port specific code is located in a  folder.  Since all currently supported databases are based on Postgres, the  port contains all the port-ports postgres
specific files, with  and  inheriting from it.  Before proceeding with this guide, it is recommended that you familiarize yourself with the greenplum hawq MADl
ib module anatomy.

Docker Image
We provide a Docker image with necessary dependencies required to compile and test MADlib on PostgreSQL 9.6.  You can view the dependency docker 
file at  ./tool/docker/base/Dockerfile_postgres_9_6. The image is hosted on docker hub at madlib/postgres_9.6:latest. Later we will 
provide a similar Docker image for Greenplum Database.

Some useful commands to use the Docker file:

## 1) Pull down the `madlib/postgres_9.6:latest` image from docker hub:
docker pull madlib/postgres_9.6:latest
## 2) Launch a container corresponding to the MADlib image, mounting the source code folder to the container:
docker run -d -it --name madlib -v (path to incubator-madlib directory):/incubator-madlib/ madlib/postgres_9.6
where incubator-madlib is the directory where the MADlib source code resides.
############################################## * WARNING * ##################################################
# Please be aware that when mounting a volume as shown above, any changes you make in the "incubator-madlib" 
# folder inside the Docker container will be reflected on your local disk (and vice versa). This means that
# deleting data in the mounted volume from a Docker container will delete the data from your local disk also.
#############################################################################################################
## 3) When the container is up, connect to it and build MADlib:
docker exec -it madlib bash
mkdir /incubator-madlib/build-docker
cd /incubator-madlib/build-docker
cmake ..
make
make doc
make install
## 4) Install MADlib:
src/bin/madpack -p postgres -c postgres/postgres@localhost:5432/postgres install
## 5) Several other madpack commands can now be run:
# Run install check, on all modules:
src/bin/madpack -p postgres -c postgres/postgres@localhost:5432/postgres install-check
# Run install check, on a specific module, say svm:
src/bin/madpack -p postgres -c postgres/postgres@localhost:5432/postgres install-check -t svm
# Run dev check, on all modules (more comprehensive than install check):
src/bin/madpack -p postgres -c postgres/postgres@localhost:5432/postgres dev-check
# Run dev check, on a specific module, say svm:
src/bin/madpack -p postgres -c postgres/postgres@localhost:5432/postgres dev-check -t svm
# Reinstall MADlib:
src/bin/madpack -p postgres -c postgres/postgres@localhost:5432/postgres reinstall
## 6) Kill and remove containers (after exiting the container):
docker kill madlib
docker rm madlib

https://ci-builds.apache.org/job/Madlib/job/madlib-build/job/master/badge/icon
https://github.com/apache/incubator-madlib/tree/master/examples/hello_world
https://cwiki.apache.org/confluence/display/MADLIB/Installation+Guide
https://cwiki.apache.org/confluence/display/MADLIB/Module+Anatomy
https://cwiki.apache.org/confluence/display/MADLIB/Module+Anatomy
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Adding A New Module
Let's add a new module called . Inside this module we implement a  (UDA), called  which computes hello_world User-Defined SQL Aggregate avg_var
the mean and variance for a given numerical column of a table.  We'll implement a distributed version of  for computing the mean Welford's online algorithm
and variance.

Unlike an ordinary UDA in PostgreSQL,  will also work on a distributed database and take advantage of the underlying distributed network for avg_var
parallel computations.  The usage of  is very simple; users simply run the following command in avg_var psql:

sql select avg_var(bath) from houses

which will print three numbers on the screen: mean, variance and number of rows in column  of table  .bath houses

Below are the main steps we will go through:

Register the module.
Define the SQL functions.
Implement the functions in C++.
Register the C++ header files.

The files for this exercise can be found in the   of the source code repository.hello world folder

1. Register the module

Add the following line to the file called  under Modules.yml ./src/config/

- name: hello_world

and create two folders:  and . The names of the folders need to ./src/ports/postgres/modules/hello_world ./src/modules/hello_world

match the name of the module specified in .Modules.yml

2. Define the SQL functions

Create file  under folder .  Inside this file we define the aggregate function and avg_var.sql_in ./src/ports/postgres/modules/hello_world
other helper functions for computing mean and variance. The actual implementations of those functions will be in separate C++ files which we will describe 
in the next section.

At the beginning of file  the command ('SQLCommon.m4') is necessary to run the .  M4 is used to add avg_var.sql_in m4_include m4 macro processor
platform-specific commands in the SQL definitions and is run while deploying MADlib to the database.

We define the aggregate function  using built-in PostgreSQL command .avg_var CREATE AGGREGATE

DROP AGGREGATE IF EXISTS MADLIB_SCHEMA.avg_var(DOUBLE PRECISION);

CREATE AGGREGATE MADLIB_SCHEMA.avg_var(DOUBLE PRECISION) (
    SFUNC=MADLIB_SCHEMA.avg_var_transition,
    STYPE=double precision[],
    FINALFUNC=MADLIB_SCHEMA.avg_var_final,
    m4_ifdef(`__POSTGRESQL__', `', `prefunc=MADLIB_SCHEMA.avg_var_merge_states,')
    INITCOND='{0, 0, 0}'
); 

We also define parameters passed to :CREATE AGGREGATE

SFUNC
The name of the state transition function to be called for each input row. The state transition function,  in this avg_var_transition
example, is defined in the same file  and implemented later in C++.avg_var.sql_in

FINALFUNC
The name of the final function called to compute the aggregate's result after all input rows have been traversed. The final function, avg_v

 in this example, is defined in the same file  and implemented later in C++.ar_final avg_var.sql_in
PREFUNC

http://www.postgresql.org/docs/current/static/xaggr.html
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm
https://github.com/apache/incubator-madlib/tree/master/examples/hello_world
http://www.gnu.org/software/m4/m4.html
http://www.postgresql.org/docs/current/static/sql-createaggregate.html


The name of the merge function called to combine the aggregate's state values after each segment, or partition, of data has been 
traversed. The merge function is needed for distributed datasets on Greenplum and HAWQ. For PostgreSQL, the data is not distributed, 
and the merge function is not necessary. For completeness we implement a merge function called  in this avg_var_merge_states
guide.

INITCOND
The initial condition for the state value. In this example it is an all-zero double array corresponding to the values of mean, variance, and 
the number of rows, respectively.

The transition, merge, and final functions are defined in the same file  as the aggregate function. More details about those functions can avg_var.sql_in
be found in the .PostgreSQL documentation

3. Implement the functions in C++

Create the header and the source files,  and , under the folder . In the header file we avg_var.hpp avg_var.cpp ./src/modules/hello_world
declare the transition, merge and final functions using the macro . For example, the transition function DECLARE_UDF(MODULE, NAME) avg_var_transi

 is declared as . The macro  is defined in the file  tion DECLARE_UDF(hello_world, avg_var_transition) DECLARE_UDF dbconnector.hpp
under ../src/ports/postgres/dbconnector

Under the hood, each of the three UDFs is declared as a subclass of . The behavior of those UDFs is solely determined dbconnector::postgres::UDF
by its member function

AnyType run(AnyType &args);

In other words, we only need to implement the following methods in the  file:avg_var.cpp

AnyType avg_var_transition::run(AnyType& args);
AnyType avg_var_merge_states::run(AnyType& args);
AnyType avg_var_final::run(AnyType& args);

Here the  class works for both passing data from the DBMS to the C++ function, as well as returning values back from C++. Refer to AnyType TypeTraits
 for more details._impl.hpp

Transition function

AnyType
avg_var_transition::run(AnyType& args) {
    // get current state value
    AvgVarTransitionState<MutableArrayHandle<double> > state = args[0];
    // update state with current row value
    double x = args[1].getAs<double>();
    state += x;
    state.numRows ++;
    return state;
}

There are two arguments for  , as specified in  . The first one is an array of SQL double type, avg_var_transition avg_var.sql_in
corresponding to the current mean, variance, and number of rows traversed, and the second one is a double representing the current tuple value.

We will describe  later. Basically it takes , a SQL double array, passes the data to the appropriate class AvgVarTransitionState args[0]
C++ types and stores them in the  instance.state

We compute the average and variance in an on-line manner  in the class by overloading the operator += AvgVarTransitionState.

Merge function

AnyType
avg_var_merge_states::run(AnyType& args) {
    AvgVarTransitionState<MutableArrayHandle<double> > stateLeft = args[0];
    AvgVarTransitionState<ArrayHandle<double> > stateRight = args[1];

    // Merge states together and return
    stateLeft += stateRight;
    return stateLeft;
}

Again: the arguments contained in  are defined in .AnyType& args avg_var.sql_in

http://www.postgresql.org/docs/current/static/sql-createaggregate.html


The details are hidden in the method of class  which overloads the operator AvgVarTransitionState +=

Final function 

AnyType
avg_var_final::run(AnyType& args) {
    AvgVarTransitionState<MutableArrayHandle<double> > state = args[0];

    // If we haven't seen any data, just return Null. This is the standard
    // behavior of aggregate function on empty data sets (compare, e.g.,
    // how PostgreSQL handles sum or avg on empty inputs)
    if (state.numRows == 0)
        return Null();

    return state;
}

Class  overloads the  operator such that we can directly return state, an instance of AvgVarTransitionState AnyType() AvgVarTransition
, while the function is expected to return a .State AnyType

Bridging class

Below are the methods that overload the operator  for the bridging class : += AvgVarTransitionState

   /**
     * @brief Update state with a new data point
     */
    AvgVarTransitionState &operator+=(const double x){
        double diff = (x - avg);
        double normalizer = static_cast<double>(numRows + 1);
        // online update mean
        this->avg += diff / normalizer;
        // online update variance
        double new_diff = (x - avg);
        double a = static_cast<double>(numRows) / normalizer;
        this->var = (var * a) + (diff * new_diff) / normalizer;
    }
 
/**
 * @brief Merge with another State object
 *
 * We update mean and variance in a online fashion
 * to avoid intermediate large sum. 
 */
template <class OtherHandle>
AvgVarTransitionState &operator+=(
    const AvgVarTransitionState<OtherHandle> &inOtherState) {

    if (mStorage.size() != inOtherState.mStorage.size())
        throw std::logic_error("Internal error: Incompatible transition "
                               "states");
    double avg_ = inOtherState.avg;
    double var_ = inOtherState.var;
    uint64_t numRows_ = static_cast<uint64_t>(inOtherState.numRows);
    double totalNumRows = static_cast<double>(numRows + numRows_);
    double p = static_cast<double>(numRows) / totalNumRows;
    double p_ = static_cast<double>(numRows_) / totalNumRows;
    double totalAvg = avg * p + avg_ * p_;
    double a = avg - totalAvg;
    double a_ = avg_ - totalAvg;

    numRows += numRows_;
    var = p * var + p_ * var_ + p * a * a + p_ * a_ * a_;
    avg = totalAvg;
    return *this;
}



Given the mean, variance and the size of two data sets,  computes the mean and variance of the two data sets combined.Welford’s method

4. Register the C++ header files

The SQL functions defined in  need to be able to locate the actual implementations from the C++ files. This is done by simply adding avg_var.sql_in
the following line to the file  under declarations.hpp ./src/modules/

#include "hello_world/avg_var.hpp"

5. Running the new module

Now let's run an example using the new module. First, rebuild and reinstall MADLib according to the instructions from . We use the Installation Guide  pati
 for testing purposes.  From the   terminal, the result below shows that half of the 20 ents dataset from the  MADlib Quick Start Guide for Users psql

patients have had second heart attacks within 1 year (yes = 1):

SELECT madlib.avg_var(second_attack) FROM patients;

    -- ************ --
    --    Result    --
    -- ************ --
    +-------------------+
    | avg_var           |
    |-------------------|
    | [0.5, 0.25, 20.0] |
    +-------------------+
-- (average, variance, count) --

Adding An Iterative UDF
In this session we demonstrate a slightly more complicated example which requires invoking a UDA iteratively. Such cases can often be found in many 
machine learning modules where the underlying optimization algorithm takes iterative steps towards the optimum of the objective function. In this example 
we implement a simple logistic regression solver as an iterative UDF. In particular, the user will be able to type the following command in  to train a psql
logistic regression classifier:

SELECT madlib.logregr_simple_train('patients','logreg_mdl', 'second_attack', 'ARRAY[1, treatment, 
trait_anxiety]');

and to see the results:

SELECT * FROM logreg_mdl;

Here the data is stored in a SQL TABLE called . The target for logistic regression is the column  and the features are columns patients second_attack
 and . The  entry in the  denotes an additional bias term in the model.treatment trait_anxiety 1 ARRAY

We add the solver to the  module created above. Here are the main steps to follow:hello_world

In ./src/ports/postgres/modules/hello_world
create file __init__.py_in
create file simple_logistic.py_in
create file simple_logistic.sql_in

In ./src/modules/hello_world
create file simple_logistic.cpp
create file simple_logistic.hpp

In ./src/modules
modify file  append a new line    to the end.declarations.hpp: #include "hello_world/simple_logistic.hpp"

Compared to the steps presented in the last session, here we do not need to modify the  file because we are not creating new module. Modules.yml
Another difference is that we create an additional  python file along with the  file.  That is where most of the iterative logic will be .py_in .sql_in
implemented.

The files for this exercise can be found in the   of the source code repository. Please note that  is not included in this hello world folder __init__.py_in
folder as an empty file will be sufficient for the purposes of this exercise.

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
https://cwiki.apache.org/confluence/display/MADLIB/Installation+Guide#InstallationGuide-CompileFromSource
https://cwiki.apache.org/confluence/display/MADLIB/Quick+Start+Guide+for+Users#QuickStartGuideforUsers-SampleProblem
https://github.com/apache/incubator-madlib/tree/master/examples/hello_world


1. Overview

The overall logic is split into three parts. All the UDF and UDA are defined in . The ,  and  simple_logistic.sql_in transition merge final
functions are implemented in C++. Those functions together constitute the UDA called  which takes one step from the current __logregr_simple_step
state to decrease the logistic regression objective. And finally in  the  package is used to implement in python a UDF simple_logistic.py_in plpy
called  which invokes  iteratively until convergence.logregr_simple_train __logregr_simple_step

Note that the SQL function  is defined in  as follows:logregr_simple_train simple_logistic.sql_in

CREATE OR REPLACE FUNCTION MADLIB_SCHEMA.logregr_simple_train (
    source_table        VARCHAR,
    out_table           VARCHAR,
    dependent_varname   VARCHAR,
    independent_varname VARCHAR,
    max_iter            INTEGER,
    tolerance           DOUBLE PRECISION,
    verbose             BOOLEAN
) RETURNS VOID AS $$
PythonFunction(hello_world, simple_logistic, logregr_simple_train)
$$ LANGUAGE plpythonu
m4_ifdef(`__HAS_FUNCTION_PROPERTIES__', `MODIFIES SQL DATA', `');

where  denotes that the actual implementation is provided by a PythonFunction(hello_world, simple_logistic, logregr_simple_train)

python function  inside the file  in module , as shown below:logregr_simple_train simple_logistic hello_world

def logregr_simple_train(
        schema_madlib, source_table, out_table, dependent_varname,
        independent_varname, max_iter=None, 
        tolerance=None, verbose=None, **kwargs):
    """
    Train logistic model

    @param schema_madlib Name of the MADlib schema, properly escaped/quoted
    @param source_table Name of relation containing the training data
    @param out_table Name of relation where model will be outputted
    @param dependent_varname Name of dependent column in training data (of type BOOLEAN)
    @param independent_varname Name of independent column in training data (of type
                   DOUBLE PRECISION[])
    @param max_iter The maximum number of iterations that are allowed.
    @param tolerance The precision that the results should have
    @param kwargs We allow the caller to specify additional arguments (all of
           which will be ignored though). The purpose of this is to allow the
           caller to unpack a dictionary whose element set is a superset of
           the required arguments by this function.

    @return A composite value which is __logregr_simple_result defined in simple_logistic.sql_in
    """

    return __logregr_train_compute(
        schema_madlib, source_table, out_table, dependent_varname,
        independent_varname, max_iter, tolerance,
        verbose, **kwargs)

2.  Iterative procedures in plply

The iterative logic is implemented using the PL/Python procedural language. In the beginning of simple_logistic.py_in we import a Python module 
called plpy which provides several functions to execute database commands. Implementing the iterative logic using plpy is simple, as demonstrated 
below:

update_plan = plpy.prepare(
    """
    SELECT
        {schema_madlib}.__logregr_simple_step(
            ({dep_col})::boolean,
            ({ind_col})::double precision[],
            ($1))

http://www.postgresql.org/docs/current/static/plpython.html


    FROM {tbl_source}
    """.format(
        tbl_output=tbl_output,
        schema_madlib=schema_madlib,
        dep_col=dep_col,
        ind_col=ind_col,
        tbl_source=tbl_source), ["double precision[]"])

state = None
for it in range(0, max_iter):
    res_tuple = plpy.execute(update_plan, [state])
    state = res_tuple[0].values()[0]

The   is a UDA defined in   and implemented using  ,   and   func__logregr_simple_step simple_logistic.sql_in transition merge final
tions provided in C++ files in ../src/modules/hello_world
__logregr_simple_step takes three arguments, the target, the features and the previous state.
The state is initialized as   which is interpreted as   value in SQL by  .None null plpy
A more sophisticated iterative scheme for logistic regression would also include optimality verification and convergence guarantee procedures, 
which are neglected on purpose here for simplicity.
For a production-level implementation of logistic regression, refer to the module  .regress

3. Running the new iterative module

The example below demonstrates the usage of  on the  table we used earlier. The trained classification madlib.logregr_simple_train patients
model is stored in the table called  and can be viewed using standard SQL query.logreg_mdl

SELECT madlib.logregr_simple_train( 
    'patients',                                 -- source table
    'logreg_mdl',                               -- output table
    'second_attack',                            -- labels
    'ARRAY[1, treatment, trait_anxiety]');      -- features
SELECT * FROM logreg_mdl;

-- ************ --
--    Result    --
-- ************ --
+--------------------------------------------------+------------------+
| coef                                             |   log_likelihood |
|--------------------------------------------------+------------------|
| [-6.27176619714, -0.84168872422, 0.116267554551] |         -9.42379 |
+--------------------------------------------------+------------------+
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