Quick Start Guide for Developers

This guide explains all of the elements needed to successfully develop and plug in a new MADIib® module.

. Prerequisites

. Docker Image

. Adding a New Module

. Adding an Iterative UDF

A WN P

The files for the examples in this guide can be found in the hello world folder of the source code repository.

Prerequisites

Install MADIib by following the steps in the Installation Guide for MADIib or use the Docker image instructions below.

MADIib source code is organized such that the core logic of a machine learning or statistical module is located in a common location, and the database-
port specific code is located in a por t s folder. Since all currently supported databases are based on Postgres, the post gr es port contains all the port-
specific files, with gr eenpl umand hawg inheriting from it. Before proceeding with this guide, it is recommended that you familiarize yourself with the MADI
ib module anatomy.

Docker Image

We provide a Docker image with necessary dependencies required to compile and test MADIib on PostgreSQL 9.6. You can view the dependency docker
file at ./t ool / docker/base/ Dockerfil e_postgres_9_6. The image is hosted on docker hub at madl i b/ post gres_9. 6: | at est . Later we will
provide a similar Docker image for Greenplum Database.

Some useful commands to use the Docker file:

1) Pull down the “nmamdlib/postgres_9.6:1atest’ inmage from docker hub:

docker pull madlib/postgres_9.6:1atest

2) Launch a container corresponding to the MADIib i mage, nounting the source code folder to the container:
docker run -d -it --name madlib -v (path to incubator-madlib directory):/incubator-nadlib/ nmadlib/postgres_9.6
where incubator-madlib is the directory where the MADI i b source code resides.

Pl ease be aware that when nounting a volunme as shown above, any changes you make in the "incubator-nmadlib"
folder inside the Docker container will be reflected on your local disk (and vice versa). This neans that
deleting data in the nounted volune froma Docker container will delete the data fromyour |ocal disk also.
HHH R R R S R R R R R B B R R R R R
3) When the container is up, connect to it and build MAD i b:

docker exec -it nudlib bash

nkdir /incubator-nadlib/build-docker

cd /incubator-madlib/buil d-docker

cmake ..

make

nmake doc

nmake install

4) Install MAD i b:

src/ bi n/ madpack -p postgres -c postgres/ postgres@ ocal host: 5432/ postgres install

5) Several other madpack conmands can now be run:

Run install check, on all nodul es:

src/ bi n/ madpack -p postgres -c postgres/ postgres@ ocal host: 5432/ postgres install-check

Run install check, on a specific nodule, say svm

src/ bi n/ madpack -p postgres -c postgres/postgres@ ocal host: 5432/ postgres install-check -t svm

Run dev check, on all nodules (nmore conprehensive than install check):

src/ bi n/ madpack -p postgres -c postgres/postgres@ ocal host: 5432/ postgres dev-check

Run dev check, on a specific nodule, say svm

src/ bi n/ madpack -p postgres -c postgres/postgres@ ocal host: 5432/ post gres dev-check -t svm

Reinstall MAD i b:

src/ bi n/ madpack -p postgres -c postgres/postgres@ ocal host: 5432/ postgres reinstall

6) Kill and renove containers (after exiting the container):

docker kill madlib

docker rmmadlib

https://ci-builds.apache.org/job/Madlib/job/madlib-build/job/master/badge/icon
https://github.com/apache/incubator-madlib/tree/master/examples/hello_world
https://cwiki.apache.org/confluence/display/MADLIB/Installation+Guide
https://cwiki.apache.org/confluence/display/MADLIB/Module+Anatomy
https://cwiki.apache.org/confluence/display/MADLIB/Module+Anatomy

Adding A New Module

Let's add a new module called hel | o_wor | d. Inside this module we implement a User-Defined SQL Aggregate (UDA), called avg_var which computes
the mean and variance for a given numerical column of a table. We'll implement a distributed version of Welford's online algorithm for computing the mean
and variance.

Unlike an ordinary UDA in PostgreSQL, avg_var will also work on a distributed database and take advantage of the underlying distributed network for
parallel computations. The usage of avg_var is very simple; users simply run the following command in psql :

sql sel ect avg_var(bath) from houses

which will print three numbers on the screen: mean, variance and number of rows in column bat h of table houses.
Below are the main steps we will go through:

Register the module.

Define the SQL functions.
Implement the functions in C++.
Register the C++ header files.

ronE

The files for this exercise can be found in the hello world folder of the source code repository.

1. Register the module

Add the following line to the file called Modul es. ym under . /src/ confi g/

- nane: hello_world

and create two folders: . / src/ port s/ post gres/ modul es/ hel |l o_wor| dand./src/ nmodul es/ hel | o_wor| d. The names of the folders need to
match the name of the module specified in Modul es. ymi .

2. Define the SQL functions

Create file avg_var. sql _i n under folder . / src/ port s/ post gr es/ nodul es/ hel | o_wor | d. Inside this file we define the aggregate function and
other helper functions for computing mean and variance. The actual implementations of those functions will be in separate C++ files which we will describe
in the next section.

At the beginning of file avg_var . sqgl _i n the command nm4_i ncl ude('SQLCommon.m4') is necessary to run the m4 macro processor. M4 is used to add
platform-specific commands in the SQL definitions and is run while deploying MADIib to the database.

We define the aggregate function avg_var using built-in PostgreSQL command CREATE AGGREGATE.

DROP AGGREGATE | F EXI STS MADLI B_SCHEMA. avg_var (DOUBLE PRECI SI ON);

CREATE AGCGREGATE MADLI B_SCHEMA. avg_var (DOUBLE PRECI SI ON) (
SFUNC=MADLI B_SCHEMA. avg_var _transition,
STYPE=doubl e precision[],
FI NALFUNC=MADL| B_SCHEMA. avg_var _final ,
m4_i fdef ("__POSTGRESQL_ ', ', ~prefunc=MADLI B_SCHEMA. avg_var_nerge_states,')
I NI TCOND=' {0, O, O}’
)

We also define parameters passed to CREATE AGGREGATE:

® SFUNC
© The name of the state transition function to be called for each input row. The state transition function, avg_var _t ransi ti on in this
example, is defined in the same file avg_var. sqgl _i n and implemented later in C++.
® FI NALFUNC
© The name of the final function called to compute the aggregate's result after all input rows have been traversed. The final function, avg_v
ar_fi nal in this example, is defined in the same file avg_var . sql _i n and implemented later in C++.
® PREFUNC

http://www.postgresql.org/docs/current/static/xaggr.html
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm
https://github.com/apache/incubator-madlib/tree/master/examples/hello_world
http://www.gnu.org/software/m4/m4.html
http://www.postgresql.org/docs/current/static/sql-createaggregate.html

© The name of the merge function called to combine the aggregate's state values after each segment, or partition, of data has been
traversed. The merge function is needed for distributed datasets on Greenplum and HAWQ. For PostgreSQL, the data is not distributed,
and the merge function is not necessary. For completeness we implement a merge function called avg_var _ner ge_st at es in this
guide.
® | NI TCOND
O The initial condition for the state value. In this example it is an all-zero double array corresponding to the values of mean, variance, and
the number of rows, respectively.

The transition, merge, and final functions are defined in the same file avg_var . sql _i n as the aggregate function. More details about those functions can
be found in the PostgreSQL documentation.

3. Implement the functions in C++

Create the header and the source files, avg_var . hpp and avg_var . cpp, under the folder . / sr ¢/ modul es/ hel | o_wor | d. In the header file we
declare the transition, merge and final functions using the macro DECLARE_UDF(MODULE, NAME) . For example, the transition function avg_var _t r ansi
tion is declared as DECLARE_UDF(hel | o_worl d, avg_var _transition).The macro DECLARE_UDF is defined in the file dbconnect or . hpp
under . / src/ ports/ postgres/ dbconnect or.

Under the hood, each of the three UDFs is declared as a subclass of dbconnect or: : post gr es: : UDF. The behavior of those UDFs is solely determined
by its member function

AnyType run(AnyType &args);

In other words, we only need to implement the following methods in the avg_var . cpp file:

AnyType avg_var _transition::run(AnyType& args);
AnyType avg_var_nerge_states::run(AnyType& args);
AnyType avg_var _final::run(AnyType& args);

Here the AnyType class works for both passing data from the DBMS to the C++ function, as well as returning values back from C++. Refer to TypeTraits
_i mpl . hpp for more details.

Transition function

AnyType
avg_var _transition::run(AnyType& args) {
/] get current state val ue
AvgVar Tr ansi t i onSt at e<Mut abl eAr r ayHandl e<doubl e> > state = args[0];
/] update state with current row val ue
doubl e x = args[1].get As<doubl e>();
state += x;
state. nunRows ++;
return state;

® There are two arguments for avg_var _transi ti on, as specified in avg_var . sql _i n. The first one is an array of SQL double type,
corresponding to the current mean, variance, and number of rows traversed, and the second one is a double representing the current tuple value.

® We will describe cl ass AvgVar Transi ti onSt at e later. Basically it takes ar gs[0] , a SQL double array, passes the data to the appropriate
C++ types and stores them in the st at e instance.

® We compute the average and variance in an on-line manner by overloading the operator += in the class AvgVar Tr ansi ti onSt at e.

Merge function

AnyType

avg_var _nerge_states::run(AnyType& args) {
AvgVar Tr ansi ti onSt at e<Mut abl eAr rayHandl e<doubl e> > statelLeft = args[O0];
AvgVar Transi ti onSt at e<Arr ayHand| e<doubl e> > stateRi ght = args[1];

/'l Merge states together and return

stateLeft += stateRight;
return statelLeft;

® Again: the arguments contained in AnyType& ar gs are defined in avg_var. sql _i n.

http://www.postgresql.org/docs/current/static/sql-createaggregate.html

® The details are hidden in the method of class AvgVar Tr ansi t i onSt at e which overloads the operator +=

Fi nal function

AnyType
avg_var _final::run(AnyType& args) {
AvgVar Tr ansi ti onSt at e<Mut abl eAr rayHandl e<doubl e> > state = args[O0];

/1 If we haven't seen any data, just return Null. This is the standard
/'l behavi or of aggregate function on enpty data sets (conpare, e.g.,
/'l how PostgreSQ@ handl es sum or avg on enpty inputs)
if (state.nunmRows == 0)

return Null ();

return state;

® Class AvgVar Transi ti onSt at e overloads the AnyType() operator such that we can directly return state, an instance of AvgVar Tr ansi ti on
St at e, while the function is expected to return a Any Type.

Bridging class

Below are the methods that overload the operator += for the bridging class AvgVar Tr ansi ti onSt at e:

/**
* @rief Update state with a new data point
*/
AvgVar Transi ti onSt ate &operator+=(const doubl e Xx){
double diff = (x - avg);
doubl e normalizer = static_cast<doubl e>(nunRows + 1);
/1 online update nmean
this->avg += diff / normalizer;
/1 online update variance
double new diff = (x - avg);
doubl e a = static_cast<doubl e>(nunRows) / nornalizer;
this->var = (var * a) + (diff * new.diff) / nornalizer;

/*-k

* @rief Merge with another State object

*

* W update nean and variance in a online fashion

* to avoid internediate |arge sum

*

/
tenpl ate <class O her Handl e>
AvgVar Transi ti onSt at e &oper at or +=(
const AvgVar Transi tionSt at e<Ct her Handl e> & nQt her State) {

if (nBtorage.size() !'=inCherState. nBtorage. size())
throw std::logic_error("Internal error: Inconpatible transition "
"states");
doubl e avg_ = i nQther State. avg;
double var_ = inQherState. var;

uint64_t nunmRows_ = static_cast<uint64_t>(i nQher State. nunRows) ;
doubl e total NunRows = static_cast<doubl e>(nunRows + nunRows_);
double p = static_cast <doubl e>(nunRows) / total NunmRows;

double p_ = static_cast<doubl e>(nunmRows_) / total NumRows;

double total Avg = avg * p + avg_ * p_;
double a = avg - total Avg;

double a_ = avg_ - total Avg;

nunRows += nunmRows_;

var = p * var + p_* var_+p* a*a+p_*a_ * a_
avg = total Avg;

return *this;

Given the mean, variance and the size of two data sets, Welford’s method computes the mean and variance of the two data sets combined.

4. Register the C++ header files

The SQL functions defined in avg_var . sql _i n need to be able to locate the actual implementations from the C++ files. This is done by simply adding
the following line to the file decl ar at i ons. hpp under . / src/ nodul es/

#i ncl ude "hel | o_worl d/ avg_var. hpp"

5. Running the new module

Now let's run an example using the new module. First, rebuild and reinstall MADLib according to the instructions from Installation Guide. We use the pat i
ent s dataset from the MADIib Quick Start Guide for Users for testing purposes. From the psql terminal, the result below shows that half of the 20
patients have had second heart attacks within 1 year (yes = 1):

SELECT nmdl i b. avg_var (second_attack) FROM patients;

Khkkkkhkkkkkkk

-- Resul t --

KhkkKkKkKkKKKK**

-- (average, variance, count) --

Adding An lterative UDF

In this session we demonstrate a slightly more complicated example which requires invoking a UDA iteratively. Such cases can often be found in many
machine learning modules where the underlying optimization algorithm takes iterative steps towards the optimum of the objective function. In this example
we implement a simple logistic regression solver as an iterative UDF. In patrticular, the user will be able to type the following command in psql to train a
logistic regression classifier:

SELECT nedlib.logregr_sinple_train('patients','logreg_ndl', 'second_attack', 'ARRAY[1, treatnent,
trait_anxiety]');

and to see the results:

SELECT * FROM | ogreg_ndl ;

Here the data is stored in a SQL TABLE called pat i ent s. The target for logistic regression is the column second_at t ack and the features are columns
treatment andtrait_anxiety. The 1 entry in the ARRAY denotes an additional bias term in the model.

We add the solver to the hel | o_wor | d module created above. Here are the main steps to follow:

® In./src/ports/postgres/nmodul es/hello_world
O createfile __init__.py_in
O create file si npl e_l ogi stic.py_in
o create file si npl e_l ogi stic.sql _in
® In./src/nodul es/hello_world
o create file si npl e_l ogi stic.cpp
o create file si npl e_| ogi sti c. hpp
® In./src/nodul es
© modify file decl ar ati ons. hpp: append a new line #i ncl ude "hell o_worl d/si npl e_Il ogi stic. hpp" to the end.

Compared to the steps presented in the last session, here we do not need to modify the Modul es. ynml file because we are not creating new module.
Another difference is that we create an additional . py_i n python file along with the . sgl _i n file. That is where most of the iterative logic will be
implemented.

The files for this exercise can be found in the hello world folder of the source code repository. Please note that __i ni t __. py_i n is not included in this
folder as an empty file will be sufficient for the purposes of this exercise.

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
https://cwiki.apache.org/confluence/display/MADLIB/Installation+Guide#InstallationGuide-CompileFromSource
https://cwiki.apache.org/confluence/display/MADLIB/Quick+Start+Guide+for+Users#QuickStartGuideforUsers-SampleProblem
https://github.com/apache/incubator-madlib/tree/master/examples/hello_world

1. Overview

The overall logic is split into three parts. All the UDF and UDA are defined in si npl e_| ogi stic.sql _in. Thetransition, merge andfi nal
functions are implemented in C++. Those functions together constitute the UDA called __| ogr egr _si npl e_st ep which takes one step from the current
state to decrease the logistic regression objective. And finally in si npl e_| ogi sti c. py_i n the pl py package is used to implement in python a UDF
called | ogr egr _si npl e_t r ai n which invokes __| ogr egr _si npl e_st ep iteratively until convergence.

Note that the SQL function | ogr egr _si npl e_t r ai n is defined in si npl e_| ogi sti c. sql _i n as follows:

CREATE OR REPLACE FUNCTI ON MADLI B_SCHEMA. | ogregr _sinple_train (
source_tabl e VARCHAR,
out _table VARCHAR,
dependent _var nane VARCHAR,
i ndependent _var namre VARCHAR,

max_iter | NTEGER,
tol erance DOUBLE PRECI SI ON,
ver bose BOOLEAN

) RETURNS VO D AS $$

Pyt honFunction(hell o_world, sinple_logistic, |ogregr_sinple_train)
$$ LANGUAGE pl pyt honu

mA_i fdef (* __HAS_FUNCTI ON_PROPERTIES__', “MODI FIES SQL DATA', '');

where Pyt honFunction(hell o_world, sinple_logistic, |ogregr_sinple_train) denotes thatthe actual implementation is provided by a
python function | ogr egr _si npl e_t r ai n inside the file si npl e_| ogi sti ¢ in module hel | o_wor | d, as shown below:

def | ogregr_sinple_train(
schema_nmadl i b, source_table, out_table, dependent_varnane,
i ndependent _var nanme, nex_iter=None,
tol erance=None, verbose=None, **kwargs):

Train | ogistic nodel

@ar am schema_nadl i b Nane of the MAD ib schenm, properly escaped/ quoted
@aram source_tabl e Nane of relation containing the training data
@ar am out _tabl e Nane of relation where nodel will be outputted
@ar am dependent _var nane Nane of dependent columm in training data (of type BOOLEAN)
@ar am i ndependent _varnane Nane of independent columm in training data (of type
DOUBLE PRECI SION[])
@aram max_i ter The maxi mum nunber of iterations that are allowed.
@aram tol erance The precision that the results should have
@aram kwargs We allow the caller to specify additional argunents (all of
which will be ignored though). The purpose of this is to allow the
caller to unpack a dictionary whose el enent set is a superset of
the required argunents by this function.

@eturn A conposite value which is _ logregr_sinple_result defined in sinple_logistic.sql_in

return __logregr_train_conpute(
schena_nmdl i b, source_table, out_table, dependent_varnane,
i ndependent _varnanme, nex_iter, tolerance,
ver bose, **kwargs)

2. lterative procedures in pl ply

The iterative logic is implemented using the PL/Python procedural language. In the beginning of si npl e_| ogi sti c. py_i n we import a Python module
called pl py which provides several functions to execute database commands. Implementing the iterative logic using pl py is simple, as demonstrated
below:

updat e_pl an = pl py. prepar e(
SELECT
{schema_nwudl i b}.__| ogregr_sinpl e_step(
({dep_col }):: bool ean,
({ind_col})::double precision[],
(1))

http://www.postgresql.org/docs/current/static/plpython.html

FROM {t bl _source}
"t format (
t bl _out put =t bl _out put,
schema_nmadl i b=schena_madl i b,
dep_col =dep_col ,
ind_col =ind_col,
t bl _source=t bl _source), ["double precision[]"])

state = None

for it in range(0, max_iter):
res_tuple = plpy. execute(update_plan, [state])
state = res_tupl e[0].val ues()[0]

® The __| ogregr_sinpl e_step is a UDA defined in si npl e_| ogi sti c. sgl _i n and implemented using t r ansi ti on, merge and fi nal func
tions provided in C++ files in. / sr ¢/ nodul es/ hel | o_wor | d.

® _ |l ogregr_sinpl e_step takes three arguments, the target, the features and the previous state.

® The state is initialized as None which is interpreted as nul | value in SQL by pl py.

® A more sophisticated iterative scheme for logistic regression would also include optimality verification and convergence guarantee procedures,
which are neglected on purpose here for simplicity.

® For a production-level implementation of logistic regression, refer to the module r egr ess.

3. Running the new iterative module

The example below demonstrates the usage of madl i b. | ogr egr _si npl e_t rai n on the pati ent s table we used earlier. The trained classification
model is stored in the table called | ogr eg_ndl and can be viewed using standard SQL query.

SELECT nudlib. | ogregr_sinple_train(

'patients', -- source table
"logreg_ndl", -- output table
'second_attack', -- labels
"ARRAY[1, treatment, trait_anxiety]'); -- features

SELECT * FROM | ogreg_ndl ;

Khkkkkkkkkkkk

-- Resul t --

kkkkkkkkkkkk _

| [-6.27176619714, -0.84168872422, 0.116267554551] | -9.42379 |

	Quick Start Guide for Developers

