
DeveloperGuide
Developer Guide

Developer Guide
Code Organization and a Brief Architecture

Introduction
Hive SerDe

How to Write Your Own SerDe
ObjectInspector
Registration of Native SerDes

MetaStore
Query Processor

Compiler
Parser
TypeChecking
Semantic Analysis
Plan generation
Task generation
Execution Engine
Plan
Operators
UDFs and UDAFs

Compiling and Running Hive
Default Mode
Advanced Mode
Running Hive Without a Hadoop Cluster

Unit tests and debugging
Layout of the unit tests
Running unit tests
Adding new unit tests
Debugging Hive Code

Debugging Client-Side Code
Debugging Server-Side Code
Debugging without Ant (Client and Server Side)

Pluggable interfaces
File Formats
SerDe - how to add a new SerDe
Map-Reduce Scripts
UDFs and UDAFs - how to add new UDFs and UDAFs

Code Organization and a Brief Architecture

Introduction

Hive has 3 main components:

Serializers/Deserializers (trunk/serde) - This component has the framework libraries that allow users to develop serializers and deserializers for 
their own data formats. This component also contains some builtin serialization/deserialization families.
MetaStore (trunk/metastore) - This component implements the metadata server, which is used to hold all the information about the tables and 
partitions that are in the warehouse.
Query Processor (trunk/ql) - This component implements the processing framework for converting SQL to a graph of map/reduce jobs and the 
execution time framework to run those jobs in the order of dependencies.

Apart from these major components, Hive also contains a number of other components. These are as follows:

Command Line Interface (trunk/cli) - This component has all the java code used by the Hive command line interface.
Hive Server (trunk/service) - This component implements all the APIs that can be used by other clients (such as JDBC drivers) to talk to Hive.
Common (trunk/common) - This component contains common infrastructure needed by the rest of the code. Currently, this contains all the java 
sources for managing and passing Hive configurations(HiveConf) to all the other code components.
Ant Utilities (trunk/ant) - This component contains the implementation of some ant tasks that are used by the build infrastructure.
Scripts (trunk/bin) - This component contains all the scripts provided in the distribution including the scripts to run the Hive CLI (bin/hive).

The following top level directories contain helper libraries, packaged configuration files etc..:

trunk/conf - This directory contains the packaged hive-default.xml and hive-site.xml.
trunk/data - This directory contains some data sets and configurations used in the Hive tests.
trunk/ivy - This directory contains the Ivy files used by the build infrastructure to manage dependencies on different Hadoop versions.
trunk/lib - This directory contains the run time libraries needed by Hive.
trunk/testlibs - This directory contains the junit.jar used by the JUnit target in the build infrastructure.
trunk/testutils (Deprecated)

Hive SerDe



What is a SerDe?

SerDe is a short name for "Serializer and Deserializer."
Hive uses SerDe (and FileFormat) to read and write table rows.
HDFS files --> InputFileFormat --> <key, value> --> Deserializer --> Row object
Row object --> Serializer --> <key, value> --> OutputFileFormat --> HDFS files

Note that the "key" part is ignored when reading, and is always a constant when writing. Basically row object is stored into the "value".

One principle of Hive is that Hive does not own the HDFS file format. Users should be able to directly read the HDFS files in the Hive tables using other 
tools or use other tools to directly write to HDFS files that can be loaded into Hive through "CREATE EXTERNAL TABLE" or can be loaded into Hive 
through "LOAD DATA INPATH," which just move the file into Hive's table directory.

Note that org.apache.hadoop.hive.serde is the deprecated old SerDe library. Please look at org.apache.hadoop.hive.serde2 for the latest version.

Hive currently uses these FileFormat classes to read and write HDFS files:

TextInputFormat/HiveIgnoreKeyTextOutputFormat: These 2 classes read/write data in plain text file format.
SequenceFileInputFormat/SequenceFileOutputFormat: These 2 classes read/write data in Hadoop SequenceFile format.

Hive currently uses these SerDe classes to serialize and deserialize data:

MetadataTypedColumnsetSerDe: This SerDe is used to read/write delimited records like CSV, tab-separated control-A separated records (sorry, 
quote is not supported yet).
LazySimpleSerDe: This SerDe can be used to read the same data format as MetadataTypedColumnsetSerDe and TCTLSeparatedProtocol, 
however, it creates Objects in a lazy way which provides better performance. Starting in   it also supports read/write data with a Hive 0.14.0
specified encode charset, for example:

ALTER TABLE person SET SERDEPROPERTIES ('serialization.encoding'='GBK');

LazySimpleSerDe can treat 'T', 't', 'F', 'f', '1', and '0' as extended, legal boolean literals if the configuration property hive.lazysimple.
 is set to  (  and later). The default is extended_boolean_literal true Hive 0.14.0 , which means only 'TRUE' and 'FALSE' are treated as legal false

boolean literals.
ThriftSerDe: This SerDe is used to read/write Thrift serialized objects. The class file for the Thrift object must be loaded first.
DynamicSerDe: This SerDe also read/write Thrift serialized objects, but it understands Thrift DDL so the schema of the object can be provided at 
runtime. Also it supports a lot of different protocols, including TBinaryProtocol, TJSONProtocol, TCTLSeparatedProtocol (which writes data in 
delimited records).

Also:

For JSON files,  was added in Hive 0.12.0. An Amazon SerDe is available at JsonSerDe s3://elasticmapreduce/samples/hive-ads/libs
 for releases prior to 0.12.0./jsonserde.jar

An  was added in Hive 0.9.1.  Starting in Hive 0.14.0 its specification is implicit with the STORED AS AVRO clause.Avro SerDe
A SerDe for the  file format was added in Hive 0.11.0.ORC
A SerDe for  was added via plug-in in Hive 0.10 and natively in Hive 0.13.0.Parquet
A SerDe for  was added in Hive 0.14.CSV

See  for detailed information about input and output processing. Also see  in the , including SerDe Storage Formats HCatalog manual CTAS Issue with 
. For information about how to create a table with a custom or native SerDe, see .JSON SerDe Row Format, Storage Format, and SerDe

How to Write Your Own SerDe

In most cases, users want to write a Deserializer instead of a SerDe, because users just want to read their own data format instead of writing to it.
For example, the RegexDeserializer will deserialize the data using the configuration parameter 'regex', and possibly a list of column names (see 
serde2.MetadataTypedColumnsetSerDe). Please see serde2/Deserializer.java for details.
If your SerDe supports DDL (basically, SerDe with parameterized columns and column types), you probably want to implement a Protocol based 
on DynamicSerDe, instead of writing a SerDe from scratch. The reason is that the framework passes DDL to SerDe through "Thrift DDL" format, 
and it's non-trivial to write a "Thrift DDL" parser.
For examples, see  below.SerDe - how to add a new SerDe

Some important points about SerDe:

SerDe, not the DDL, defines the table schema. Some SerDe implementations use the DDL for configuration, but the SerDe can also override that.
Column types can be arbitrarily nested arrays, maps, and structures.
The callback design of ObjectInspector allows lazy deserialization with CASE/IF or when using complex or nested types.

ObjectInspector

Hive uses ObjectInspector to analyze the internal structure of the row object and also the structure of the individual columns.

ObjectInspector provides a uniform way to access complex objects that can be stored in multiple formats in the memory, including:

Instance of a Java class (Thrift or native Java)
A standard Java object (we use java.util.List to represent Struct and Array, and use java.util.Map to represent Map)
A lazily-initialized object (for example, a Struct of string fields stored in a single Java string object with starting offset for each field)

https://issues.apache.org/jira/browse/HIVE-7142
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.lazysimple.extended_boolean_literal
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.lazysimple.extended_boolean_literal
https://issues.apache.org/jira/browse/HIVE-3635
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-JSON
https://cwiki.apache.org/confluence/display/Hive/AvroSerDe
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
https://cwiki.apache.org/confluence/display/Hive/Parquet
https://cwiki.apache.org/confluence/display/Hive/CSV+Serde
https://cwiki.apache.org/confluence/display/Hive/SerDe
https://cwiki.apache.org/confluence/display/Hive/HCatalog+StorageFormats
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cwiki.apache.org/confluence/display/Hive/HCatalog+StorageFormats#HCatalogStorageFormats-CTASIssuewithJSONSerDe
https://cwiki.apache.org/confluence/display/Hive/HCatalog+StorageFormats#HCatalogStorageFormats-CTASIssuewithJSONSerDe
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-RowFormat,StorageFormat,andSerDe


1.  

2.  

A complex object can be represented by a pair of ObjectInspector and Java Object. The ObjectInspector not only tells us the structure of the Object, but 
also gives us ways to access the internal fields inside the Object.

NOTE: Apache Hive recommends that custom ObjectInspectors created for use with custom SerDes have a no-argument constructor in addition to their 
normal constructors for serialization purposes. See HIVE-5380 for more details.

Registration of Native SerDes

As of a registration mechanism has been introduced for native Hive SerDes.  This allows dynamic binding between a "STORED AS" keyword in Hive 0.14 

place of a triplet of {SerDe, InputFormat, and OutputFormat} specification, in   statements.CreateTable

The following mappings have been added through this registration mechanism:

Syntax Equivalent

STORED AS AVRO /

STORED AS AVROFILE

ROW FORMAT SERDE
  'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
  STORED AS INPUTFORMAT
  'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
  OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'

STORED AS ORC /

STORED AS ORCFILE

ROW FORMAT SERDE
  'org.apache.hadoop.hive.ql.io.orc.OrcSerde'
  STORED AS INPUTFORMAT
  'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
  OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'

STORED AS PARQUET /

STORED AS PARQUETFILE

ROW FORMAT SERDE
  'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
  STORED AS INPUTFORMAT
  'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'
  OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'

STORED AS RCFILE STORED AS INPUTFORMAT
  'org.apache.hadoop.hive.ql.io.RCFileInputFormat'
  OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.RCFileOutputFormat'

STORED AS SEQUENCEFILE STORED AS INPUTFORMAT
  'org.apache.hadoop.mapred.SequenceFileInputFormat'
  OUTPUTFORMAT
  'org.apache.hadoop.mapred.SequenceFileOutputFormat'

STORED AS TEXTFILE STORED AS INPUTFORMAT
  'org.apache.hadoop.mapred.TextInputFormat'
  OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormat'

To add a new native SerDe with STORED AS keyword, follow these steps:

Create a storage format descriptor class extending from   that returns a "stored as" keyword and the names AbstractStorageFormatDescriptor.java
of InputFormat, OutputFormat, and SerDe classes.
Add the name of the storage format descriptor class to the   registration file.StorageFormatDescriptor

MetaStore

MetaStore contains metadata regarding tables, partitions and databases. This is used by Query Processor during plan generation.

Metastore Server - This is the Thrift server (interface defined in metastore/if/hive_metastore.if) that services metadata requests from clients. It 
delegates most of the requests underlying meta data store and the Hadoop file system which contains data.
Object Store - ObjectStore class handles access to the actual metadata is stored in the SQL store. The current implementation uses JPOX ORM 
solution which is based of JDA specification. It can be used with any database that is supported by JPOX. New meta stores (file based or xml 
based) can added by implementing the interface MetaStore. FileStore is a partial implementation of an older version of metastore which may be 
deprecated soon.
Metastore Client - There are python, java, php Thrift clients in metastore/src. Java generated client is extended with HiveMetaStoreClient which is 
used by Query Processor (ql/metadta). This is the main interface to all other Hive components.

Query Processor

The following are the main components of the Hive Query Processor:

https://issues.apache.org/jira/browse/HIVE-5380
https://issues.apache.org/jira/browse/HIVE-5976
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable
https://github.com/apache/hive/blob/trunk/ql/src/java/org/apache/hadoop/hive/ql/io/AbstractStorageFormatDescriptor.java
https://github.com/apache/hive/blob/trunk/ql/src/main/resources/META-INF/services/org.apache.hadoop.hive.ql.io.StorageFormatDescriptor


Parse and SemanticAnalysis (ql/parse) - This component contains the code for parsing SQL, converting it into Abstract Syntax Trees, converting 
the Abstract Syntax Trees into Operator Plans and finally converting the operator plans into a directed graph of tasks which are executed by 
Driver.java.
Optimizer (ql/optimizer) - This component contains some simple rule based optimizations like pruning non referenced columns from table scans 
(column pruning) that the Hive Query Processor does while converting SQL to a series of map/reduce tasks.
Plan Components (ql/plan) - This component contains the classes (which are called descriptors), that are used by the compiler (Parser, 
SemanticAnalysis and Optimizer) to pass the information to operator trees that is used by the execution code.
MetaData Layer (ql/metadata) - This component is used by the query processor to interface with the MetaStore in order to retrieve information 
about tables, partitions and the columns of the table. This information is used by the compiler to compile SQL to a series of map/reduce tasks.
Map/Reduce Execution Engine (ql/exec) - This component contains all the query operators and the framework that is used to invoke those 
operators from within the map/reduces tasks.
Hadoop Record Readers, Input and Output Formatters for Hive (ql/io) - This component contains the record readers and the input, output 
formatters that Hive registers with a Hadoop Job.
Sessions (ql/session) - A rudimentary session implementation for Hive.
Type interfaces (ql/typeinfo) - This component provides all the type information for table columns that is retrieved from the MetaStore and the 
SerDes.
Hive Function Framework (ql/udf) - Framework and implementation of Hive operators, Functions and Aggregate Functions. This component also 
contains the interfaces that a user can implement to create user defined functions.
Tools (ql/tools) - Some simple tools provided by the query processing framework. Currently, this component contains the implementation of the 
lineage tool that can parse the query and show the source and destination tables of the query.

Compiler

Parser

TypeChecking

Semantic Analysis

Plan generation

Task generation

Execution Engine

Plan

Operators

UDFs and UDAFs

A helpful overview of the Hive query processor can be found in this .Hive Anatomy slide deck

Compiling and Running Hive

Hive can be made to compile against different versions of Hadoop.

Default Mode

From the root of the source tree:

ant package

will make Hive compile against Hadoop version 0.19.0. Note that:

Hive uses Ivy to download the hadoop-0.19.0 distribution. However once downloaded, it's cached and not downloaded multiple times.
This will create a distribution directory in build/dist (relative to the source root) from where one can launch Hive. This distribution should only be 
used to execute queries against Hadoop branch 0.19. (Hive is not sensitive to minor revisions of Hadoop versions).

Advanced Mode

One can specify a custom distribution directory by using:

Ant to Maven

As of version  Hive uses Maven instead of Ant for its build. The following instructions are not up to date.0.13

See the  for updated instructions.Hive Developer FAQ

http://www.slideshare.net/nzhang/hive-anatomy
https://issues.apache.org/jira/browse/HIVE-5107
https://cwiki.apache.org/confluence/display/Hive/HiveDeveloperFAQ


ant -Dtarget.dir=<my-install-dir> package

One can specify a version of Hadoop other than 0.19.0 by using (using 0.17.1 as an example):

ant -Dhadoop.version=0.17.1 package

One can also compile against a custom version of the Hadoop tree (only release 0.4 and above). This is also useful if running Ivy is problematic 
(in disconnected mode for example) - but a Hadoop tree is available. This can be done by specifying the root of the Hadoop source tree to be 
used, for example:

ant -Dhadoop.root=~/src/hadoop-19/build/hadoop-0.19.2-dev -Dhadoop.version=0.19.2-dev

note that:

Hive's build script assumes that  is pointing to a distribution tree for Hadoop created by running ant package in Hadoop.hadoop.root
hadoop.version must match the version used in building Hadoop.

In this particular example -  is a checkout of the Hadoop 19 branch that uses  as default version and creates a ~/src/hadoop-19 0.19.2-dev
distribution directory in  by default.build/hadoop-0.19.2-dev

Run Hive from the command line with ' ', where  is typically  under your Hive repository top-level $HIVE_HOME/bin/hive $HIVE_HOME build/dist
directory.

$ build/dist/bin/hive

If Hive fails at runtime, try ' ' to delete the Ivy cache before rebuilding.ant very-clean package

Running Hive Without a Hadoop Cluster

From Thejas:

export HIVE_OPTS='--hiveconf mapred.job.tracker=local --hiveconf fs.default.name=file:///tmp \
    --hiveconf hive.metastore.warehouse.dir=file:///tmp/warehouse \
    --hiveconf javax.jdo.option.ConnectionURL=jdbc:derby:;databaseName=/tmp/metastore_db;create=true'

Then you can run ' ' and it will work against your local file system.build/dist/bin/hive

Unit tests and debugging

Layout of the unit tests

Hive uses  for unit tests. Each of the 3 main components of Hive have their unit test implementations in the corresponding src/test directory e.g. trunkJUnit
/metastore/src/test has all the unit tests for metastore, trunk/serde/src/test has all the unit tests for serde and trunk/ql/src/test has all the unit tests for the 
query processor. The metastore and serde unit tests provide the TestCase implementations for JUnit. The query processor tests on the other hand are 
generated using Velocity. The main directories under trunk/ql/src/test that contain these tests and the corresponding results are as follows:

Test Queries:
queries/clientnegative - This directory contains the query files (.q files) for the negative test cases. These are run through the CLI classes 
and therefore test the entire query processor stack.
queries/clientpositive - This directory contains the query files (.q files) for the positive test cases. Thesre are run through the CLI classes 
and therefore test the entire query processor stack.
qureies/positive (Will be deprecated) - This directory contains the query files (.q files) for the positive test cases for the compiler. These 
only test the compiler and do not run the execution code.
queries/negative (Will be deprecated) - This directory contains the query files (.q files) for the negative test cases for the compiler. These 
only test the compiler and do not run the execution code.

Test Results:
results/clientnegative - The expected results from the queries in queries/clientnegative.
results/clientpositive - The expected results from the queries in queries/clientpositive.
results/compiler/errors - The expected results from the queries in queries/negative.
results/compiler/parse - The expected Abstract Syntax Tree output for the queries in queries/positive.
results/compiler/plan - The expected query plans for the queries in queries/positive.

Velocity Templates to Generate the Tests:
templates/TestCliDriver.vm - Generates the tests from queries/clientpositive.
templates/TestNegativeCliDriver.vm - Generates the tests from queries/clientnegative.
templates/TestParse.vm - Generates the tests from queries/positive.

http://junit.org/


templates/TestParseNegative.vm - Generates the tests from queries/negative.

Running unit tests

Run all tests:

ant package test

Run all positive test queries:

ant test -Dtestcase=TestCliDriver

Run a specific positive test query:

ant test -Dtestcase=TestCliDriver -Dqfile=groupby1.q

The above test produces the following files:

build/ql/test/TEST-org.apache.hadoop.hive.cli.TestCliDriver.txt - Log output for the test. This can be helpful when 
examining test failures.
build/ql/test/logs/groupby1.q.out - Actual query result for the test. This result is compared to the expected result as part of the test.

Run the set of unit tests matching a regex, e.g. partition_wise_fileformat tests 10-16:

ant test -Dtestcase=TestCliDriver -Dqfile_regex=partition_wise_fileformat1[0-6]

Note that this option matches against the basename of the test without the .q suffix.

Apparently the Hive tests do not run successfully after a clean unless you run  first. Not sure why build.xml doesn't encode this dependency.ant package

Adding new unit tests

First, write a new myname.q in ql/src/test/queries/clientpositive.

Then, run the test with the query and overwrite the result (useful when you add a new test).

ant test -Dtestcase=TestCliDriver -Dqfile=myname.q -Doverwrite=true

Then we can create a patch by:

svn add ql/src/test/queries/clientpositive/myname.q ql/src/test/results/clientpositive/myname.q.out
svn diff > patch.txt

Similarly, to add negative client tests, write a new query input file in ql/src/test/queries/clientnegative and run the same command, this time specifying the 
testcase name as TestNegativeCliDriver instead of TestCliDriver. Note that for negative client tests, the output file if created using the overwrite flag can be 
be found in the directory ql/src/test/results/clientnegative.

Debugging Hive Code

Ant to Maven

As of version  Hive uses Maven instead of Ant for its build. The following instructions are not up to date.0.13

See the  for updated instructions.Hive Developer FAQ

Ant to Maven

As of version  Hive uses Maven instead of Ant for its build. The following instructions are not up to date.0.13

See the  for updated instructions. See also   and  .Hive Developer FAQ Tips for Adding New Tests in Hive How to Contribute: Add a Unit Test

https://issues.apache.org/jira/browse/HIVE-5107
https://cwiki.apache.org/confluence/display/Hive/HiveDeveloperFAQ#HiveDeveloperFAQ-Testing
https://issues.apache.org/jira/browse/HIVE-5107
https://cwiki.apache.org/confluence/display/Hive/HiveDeveloperFAQ#HiveDeveloperFAQ-HowdoIaddatestcase?
https://cwiki.apache.org/confluence/display/Hive/TipsForAddingNewTests
https://cwiki.apache.org/confluence/display/Hive/HowToContribute#HowToContribute-AddaUnitTest


Hive code includes both client-side code (e.g., compiler, semantic analyzer, and optimizer of HiveQL) and server-side code (e.g., operator/task/SerDe 
implementations). Debugging is different for client-side and server-side code, as described below.

Debugging Client-Side Code

The client-side code runs on your local machine so you can easily debug it using Eclipse the same way you debug any regular local Java code. Here are 
the steps to debug code within a unit test.

Make sure that you have run  in hive/metastore and  in hive since the last time you ran .ant model-jar ant gen-test ant clean
To run all of the unit tests for the CLI:

Open up TestCliDriver.java
Click Run->Debug Configurations, select TestCliDriver, and click Debug.

To run a single test within TestCliDriver.java:
Begin running the whole TestCli suite as before.
Once it finishes the setup and starts executing the JUnit tests, stop the test execution.
Find the desired test in the JUnit pane,
Right click on that test and select Debug.

Debugging Server-Side Code

The server-side code is distributed and runs on the Hadoop cluster, so debugging server-side Hive code is a little bit complicated. In addition to printing to 
log files using log4j, you can also attach the debugger to a different JVM under unit test (single machine mode). Below are the steps on how to debug on 
server-side code.

Compile Hive code with javac.debug=on. Under Hive checkout directory:

    > ant -Djavac.debug=on package

If you have already built Hive without javac.debug=on, you can clean the build and then run the above command.

    > ant clean  # not necessary if the first time to compile
    > ant -Djavac.debug=on package

Run ant test with additional options to tell the Java VM that is running Hive server-side code to wait for the debugger to attach. First define some 
convenient macros for debugging. You can put it in your .bashrc or .cshrc.

    > export HIVE_DEBUG_PORT=8000
    > export HIVE_DEBUG="-Xdebug -Xrunjdwp:transport=dt_socket,address=${HIVE_DEBUG_PORT},server=y,
suspend=y"

In particular HIVE_DEBUG_PORT is the port number that the JVM is listening on and the debugger will attach to. Then run the unit test as follows:

    > export HADOOP_OPTS=$HIVE_DEBUG
    > ant test -Dtestcase=TestCliDriver -Dqfile=<mytest>.q

The unit test will run until it shows:

     [junit] Listening for transport dt_socket at address: 8000

Now, you can use jdb to attach to port 8000 to debug

    > jdb -attach 8000

or if you are running Eclipse and the Hive projects are already imported, you can debug with Eclipse. Under Eclipse Run -> Debug 
Configurations, find "Remote Java Application" at the bottom of the left panel. There should be a MapRedTask configuration already. If there is no 
such configuration, you can create one with the following property:

Name: any task such as MapRedTask
Project: the Hive project that you imported.
Connection Type: Standard (Socket Attach)
Connection Properties:

Host: localhost



Port: 8000
Then hit the "Debug" button and Eclipse will attach to the JVM listening on port 8000 and continue running till the end. If you 
define breakpoints in the source code before hitting the "Debug" button, it will stop there. The rest is the same as debugging 
client-side Hive.

Debugging without Ant (Client and Server Side)

There is another way of debugging Hive code without going through Ant.
You need to install Hadoop and set the environment variable HADOOP_HOME to that.

    > export HADOOP_HOME=<your hadoop home>
 

Then, start Hive:

    >  ./build/dist/bin/hive --debug
 

It will then act similar to the debugging steps outlines in Debugging Hive code. It is faster since there is no need to compile Hive code,
and go through Ant. It can be used to debug both client side and server side Hive.

If you want to debug a particular query, start Hive and perform the steps needed before that query. Then start Hive again in debug to debug that query.

    >  ./build/dist/bin/hive
    >  perform steps before the query
 

    >  ./build/dist/bin/hive --debug
    >  run the query
 

Note that the local file system will be used, so the space on your machine will not be released automatically (unlike debugging via Ant, where the tables 
created in test are automatically dropped at the end of the test). Make sure to either drop the tables explicitly, or drop the data from /User/hive/warehouse.

Pluggable interfaces

File Formats

Please refer to  Page 59-63.Hive User Group Meeting August 2009

SerDe - how to add a new SerDe

Please refer to  Page 64-70.Hive User Group Meeting August 2009

Map-Reduce Scripts

Please refer to  Page 71-73.Hive User Group Meeting August 2009

UDFs and UDAFs - how to add new UDFs and UDAFs

Please refer to  Page 74-87.Hive User Group Meeting August 2009

 

http://www.slideshare.net/ragho/hive-user-meeting-august-2009-facebook
http://www.slideshare.net/ragho/hive-user-meeting-august-2009-facebook
http://www.slideshare.net/ragho/hive-user-meeting-august-2009-facebook
http://www.slideshare.net/ragho/hive-user-meeting-august-2009-facebook

	DeveloperGuide

