
URL to Script Resolution

This page explains how Sling maps URLs to a script or and servlet. First of all Sling looks up the resource identified by the URL - typically a path inside the
JCR repository, which is annotated by the property which defines the resource type of that resource. Using this resource type sling:resourceType
(which is kind of a relative path, eg. "myblog/comment"), scripts or servlets are looked up.

Scripts and servlets are itself resource in Sling and thus have a resource path: this is either the location in the JCR repository, the resource type in a
servlet component configuration or the "virtual" bundle resource path (if a script is provided inside a bundle without being installed into the JCR repository).

TODO: explain super types, servlet path mappings, node type resource types ()my:type -> my/type

(0) Fundamental: Scripts and Servlets are equal

In the following discussion, I will write about scripts. This will always include servlets as well. In fact, internally, Sling only handles with Servlets, whereas
scripts are packed inside a Servlet wrapping and representing the script.

(I) Base: Resource Type Inheritance

While not exactly part of our discussion, resource type inheritance as implemented for plays a vital role in script resolution.SLING-278

Each resource type may have a resource super type, which may be defined in various ways. One example is having a sling:resourceSuperType
property in the node addressed by the resource type. See and http://www.mail-archive.com/sling-dev@incubator.apache.org/msg02365.html SLING-278
for more details.

If a resource type has no explicit resource super type, the resource super type is assumed to be "sling/servlet/default". That is the resource type used for
default script selection is also acting as a basic resource type much like java.lang.Object does for other types in the Java language.

(II) Script Locations

Scripts are looked up in a series of locations defined by the ResourceResolver.getSearchPath() and the resource type (and resource super types) of the
requested resource:

 {scriptPathPrefix}/{resourceTypePath}

The pseudo code for iterating the locations would be something like:

var type = resource.getResourceType();
while (type != null) {
 for (String root: resourceResolver.getSearchPath()) {
 String path = root + type.toPath();
 findScriptsIn(path);
 }

 if (type == defaultServlet) {
 type = null;
 } else {
 type = getResourceSuperType(type);
 if (type == null) {
 type = defaultServlet;
 }
 }
}

(III) All requests are NOT equal

GET and HEAD request methods are treated differently than the other request methods. Only for GET and HEAD requests will the request selectors and
extension be considered for script selection. For other requests the servlet or script name (without the script extension) must exactly match the request
method.

More information

This page is currently a copy from . See also and the unit test this mailing list thread SLING-387 http://svn.apache.org/repos/asf/incubator/sling
./trunk/servlets/resolver/src/test/java/org/apache/sling/servlets/resolver/helper/ScriptSelectionTest.java

https://issues.apache.org/jira/browse/SLING-278
http://www.mail-archive.com/sling-dev@incubator.apache.org/msg02365.html
http://issues.apache.org/jira/browse/SLING-278
http://markmail.org/message/tksvk4xfwapdpkwo
https://issues.apache.org/jira/browse/SLING-387
http://svn.apache.org/repos/asf/incubator/sling/trunk/servlets/resolver/src/test/java/org/apache/sling/servlets/resolver/helper/ScriptSelectionTest.java
http://svn.apache.org/repos/asf/incubator/sling/trunk/servlets/resolver/src/test/java/org/apache/sling/servlets/resolver/helper/ScriptSelectionTest.java

That is for a PUT request, the script must be PUT.esp or PUT.jsp. For a GET request with a request extension of html, the script name may be html.esp or
GET.esp.

(IV) Scripts for GET requests

Apart for supporting scripts named after the request method, scripts handling GET and HEAD requests may be named differently for Sling to support a
more elaborate processing order.

Depending on whether request selectors are considered, a script may have two forms:

a. Ignoring request selectors (e.g. there are none in the request URI)

{resourceTypeLabel}.{requestExtension}.{scriptExtension}

b. Handling request selectors

{selectorStringPath}.{requestExtension}.{scriptExtension}

The constituents of these script names are as follows:

{ } - The last path segment of the path created from the resource type. This part is optional if the { } is resourceTypeLabel requestExtension
used in the script name.
{ } - The request extension. This part may be ommitted if the request extension is "html", otherwise this part is required. If requestExtension
this part is ommitted, the { } is required in the case of ignoring the selectors.resourceTypeLabel
{ } - The extension, e.g. "esp" or "jsp", identifying the scripting langauage used.scriptExtension
{ } - The selector string converted to a path, along the lines of .selectorStringPath selectorString.replace('.', '/')

(V) Priority

The rules for script path priorization is defined as follows:

The more request selectors are matched, the better
A script including the request extension matches better than one without a request extension (for html only)
A script found earlier matches better than a script found later in the processing order. This means, that script closer to the original resource type
in the resource type hierarchy is considered earlier.

(VI) Examples

Taking up again the list of potential script paths for a request of a resource whose resource type is sling:sample and the request selectors are "print.a4"
and the request extension is "html" could be:

(0) GET.esp
(1) sample.esp
(2) html.esp
(3) print.esp
(4) print/a4.esp
(5) print.html.esp
(6) print/a4.html.esp

The priority of script selection would (6) - (4) - (5) - (3) - (2) - (1) - (0). Note that (4) is a better match than (5) because it matches more selectors even
though (5) has an extension match where (4) does not.

	URL to Script Resolution

