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How To Contribute
How to Contribute to Apache Hadoop
This page describes the mechanics of   to contribute software to Apache Hadoop. For ideas about   you might contribute, please see the how what ProjectSug

 page.gestions

Dev Environment Setup
Get the source code
Read BUILDING.txt
Integrated Development Environment (IDE)
Build Tools
Native libraries
Hardware Setup

Making Changes
Generating a patch

Choosing a target branch
Unit Tests
Javadoc

Provide a patch
Testing your patch
Changes that span projects

Contributing your work
Submitting patches against object stores such as Amazon S3, OpenStack Swift and Microsoft Azure

Requesting for a Jira account
Jira Guidelines
Stay involved
See Also

Dev Environment Setup

 Here are some things you will need to build and test Hadoop. Be prepared to invest some time to set up a working Hadoop dev environment. Try getting 
the project to build and test locally first before you start writing code.  

Get the source code

First of all, you need the Hadoop source code. The official location for Hadoop is the Apache Git repository. See Git And Hadoop

Read BUILDING.txt

 Once you have the source code, we strongly recommend reading BUILDING.txt located in the root of the source tree. It has up to date information on how 
to build Hadoop on various platforms along with some workarounds for platform-specific quirks. The latest   for the current trunk can also be BUILDING.txt
viewed on the web.   

Integrated Development Environment (IDE)

You are free to use whatever IDE you prefer or your favorite text editor. Note that: 

Building and testing is often done on the command line or at least via the Maven support in the IDEs. 
Set up the IDE to follow the source layout rules of the project. 
Disable any added value "reformat" and "strip trailing spaces" features as it can create extra noise when reviewing patches.  

Build Tools

Please see BUILDING.txt for the detail.

As the Hadoop builds use the external Maven repository to download artifacts, Maven needs to be set up with the proxy settings needed to make external 
HTTP requests. The first build of every Hadoop project needs internet connectivity to download Maven dependencies.

Be online for that first build, on a good network 
To set the Maven proxy setttings, see http://maven.apache.org/guides/mini/guide-proxies.html 
Because Maven doesn't pass proxy settings down to the Ant tasks it runs   some parts of the Hadoop build may fail. The fix for this is HDFS-2381
to pass down the Ant proxy settings in the build Unix: mvn $ANT_OPTS; Windows: mvn %ANT_OPTS%. 
Tomcat is always downloaded, even when building offline. Setting -Dtomcat.download.url to a local copy and -Dtomcat.version to the version 
pointed to by the URL will avoid that download.

If you are failing to fetch a artifact from the external maven repository, you may need to delete the related files from your local cache (i.e. ~/.m2 directory).

Ref:   -   HADOOP-16577 Getting issue details... STATUS

https://wiki.apache.org/hadoop/ProjectSuggestions
https://wiki.apache.org/hadoop/ProjectSuggestions
https://cwiki.apache.org/confluence/display/HADOOP/Git+And+Hadoop
https://git-wip-us.apache.org/repos/asf?p=hadoop.git;a=blob;f=BUILDING.txt
http://maven.apache.org/guides/mini/guide-proxies.html
https://issues.apache.org/jira/browse/HDFS-2381
https://issues.apache.org/jira/browse/HADOOP-16577
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Native libraries

On Linux, you need the tools to create the native libraries: LZO headers,zlib headers, gcc, OpenSSL headers, cmake, protobuf dev tools, and libtool, and 
the GNU autotools (automake, autoconf, etc).  

For RHEL (and hence also CentOS):

 yum -y install  lzo-devel  zlib-devel  gcc gcc-c++ autoconf automake libtool openssl-devel fuse-devel cmake

For Debian and Ubuntu:

 apt-get -y install maven build-essential autoconf automake libtool cmake zlib1g-dev pkg-config libssl-dev 
libfuse-dev

Native libraries are mandatory for Windows. For instructions see  .Hadoop2OnWindows   

Hardware Setup 

Lots of RAM, especially if you are using a modern IDE. ECC RAM is recommended in large-RAM systems. 
Disk Space. Always handy. 
Network Connectivity. Hadoop tests are not guaranteed to all work if a machine does not have a network connection -and especially if it does not 
know its own name. 
Keep your computer's clock up to date via an NTP server, and set up the time zone correctly. This is good for avoiding change-log confusion.  

Making Changes

Before you start, send a message to the  , or file a bug report in  . Describe your proposed changes and check that they fit Hadoop developer mailing list Jira
in with what others are doing and have planned for the project. Be patient, it may take folks a while to understand your requirements. If you want to start 
with pre-existing issues, look for Jiras labeled newbie. You can find them using  .this filter   

Modify the source code and add some (very) nice features using your favorite IDE.

But take care about the following points  

All public classes and methods should have informative  .Javadoc comments  

Do not use @author tags. 
Code must be formatted according to  , with one exception:Sun's conventions  

Indent two spaces per level, not four. 
Code formatter xml is present here: https://github.com/apache/hadoop/tree/trunk/dev-support/code-formatter . IntelliJ users can directly import   had
oop_idea_formatter.xml
Contributions must pass existing unit tests. 

New unit tests should be provided to demonstrate bugs and fixes.   is our test framework:JUnit  
You must implement a class that uses @Test annotations for all test methods. Please note,  .Hadoop uses JUnit v4  
Define methods within your class whose names begin with test, and call JUnit's many assert methods to verify conditions; these 
methods will be executed when you run mvn test. Please add meaningful messages to the assert statement to facilitate diagnostics. 
By default, do not let tests write any temporary files to /tmp. Instead, the tests should write to the location specified by the test.build.
data system property. 
If a HDFS cluster or a MapReduce/YARN cluster is needed by your test, please use org.apache.hadoop.dfs.MiniDFSCluster and org.
apache.hadoop.mapred.MiniMRCluster (or org.apache.hadoop.yarn.server.MiniYARNCluster), respectively. TestMiniMRLocalFS is an 
example of a test that uses MiniMRCluster. 
Place your class in the src/test tree. 
TestFileSystem.java and TestMapRed.java are examples of standalone  -based tests.MapReduce  
TestPath.java is an example of a non  -based test.MapReduce  
You can run all the project unit tests with mvn test, or a specific unit test with mvn -Dtest=<class name without package prefix> test. Run 
these commands from the hadoop-trunk directory. 

If you modify the Unix shell scripts, see the  .UnixShellScriptProgrammingGuide   

Generating a patch

Choosing a target branch

Except for the following situations it is recommended that all patches be based off trunk to take advantage of the Jenkins pre-commit build. 

The patch is targeting a release branch that is not based off trunk e.g. branch-3.1, branch-2.10, etc. 
The change is targeting a specific feature branch and is not yet ready for merging into trunk.  

If you are unsure of the target branch then   is usually the best choice. Committers will usually merge the patch to downstream branches e.g. branch-trunk
3.2 as appropriate.  

Unit Tests

Please make sure that all unit tests succeed before constructing your patch and that no new javac compiler warnings are introduced by your patch.  

https://wiki.apache.org/hadoop/Hadoop2OnWindows
https://hadoop.apache.org/mailing_lists.html
https://wiki.apache.org/hadoop/Jira
https://issues.apache.org/jira/issues/?filter=12331506
http://java.sun.com/j2se/javadoc/writingdoccomments/
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
https://github.com/apache/hadoop/tree/trunk/dev-support/code-formatter
http://www.junit.org/
http://wiki.apache.org/hadoop/HowToDevelopUnitTests
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/UnixShellScriptProgrammingGuide
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For building Hadoop with Maven, use the following to run all unit tests and build a distribution. The -Ptest-patch profile will check that no new compiler 
warnings have been introduced by your patch.  

 mvn clean install -Pdist -Dtar -Ptest-patch

Any test failures can be found in the target/surefire-reports directory of the relevant module. You can also run this command in one of the hadoop-
common, hadoop-hdfs, or hadoop-mapreduce directories to just test a particular subproject.  

Unit tests development guidelines HowToDevelopUnitTests  

Javadoc

Please also check the javadoc.  

 mvn process-sources javadoc:javadoc-no-fork
firefox target/site/api/index.html 

Examine all public classes you've changed to see that documentation is complete, informative, and properly formatted. Your patch must not generate any 
javadoc warnings.  

Jenkins includes a javadoc run on Java 8 and Java 11, it will fail if there are unbalanced HTML tags or <p/> clauses (use <p> here.  

If Jenkins rejects a patch due to Java 8 or Java 11 javadoc failures, it is considered an automatic veto for the patch.

Provide a patch

You need to create a pull request in . Now attaching a patch in ASF JIRA does not work. You need to set the title which https://github.com/apache/hadoop
starts with the corresponding JIRA issue number (e.g. HADOOP-XXXXX. Fix a typo in YYY.) to integrate with the issue. If there is no corresponding issue, 
please create an issue in ASF JIRA before creating a pull request.

See also: GitHub Integration

Testing your patch

Before submitting your patch, you are encouraged to run the same tools that the automated Jenkins patch test system will run on your patch. This enables 
you to fix problems with your patch before you submit it. The dev-support/bin/test-patch script in the trunk directory will run your patch through the same 
checks that Jenkins currently does   for executing the unit tests. (See   for some tricks.)except TestPatchTips   

Run this command from a clean workspace (ie git status shows no modifications or additions) as follows:

 dev-support/bin/test-patch [options] patch-file | defect-number

At the end, you should get a message on your console that is similar to the comment added to Jira by Jenkins's automated patch test system, listing +1 
and -1 results. Generally you should expect a +1 overall in order to have your patch committed; exceptions will be made for false positives that are 
unrelated to your patch. The scratch directory (which defaults to the value of ${user.home}/tmp) will contain some output files that will be useful in 
determining cause if issues were found in the patch.  

Some things to note:

the optional cmd parameters will default to the ones in your PATH environment variable 
the grep command must support the -o flag (Both GNU grep and BSD grep support it) 
the patch command must support the -E flag  

Run the same command with no arguments to see the usage options.  

Changes that span projects

You may find that you need to modify both the common project and   or HDFS. Or perhaps you have changed something in common, and need MapReduce
to verify that these changes do not break the existing unit tests for HDFS and  . Hadoop's build system integrates with a local maven repository MapReduce
to support cross-project development. Use this general workflow for your development:  

Make your changes in common 
Run any unit tests there (e.g. 'mvn test') 
Publish your new common jar to your local mvn repository:

 hadoop-common$ mvn clean install -DskipTests

A word of caution: mvn install pushes the artifacts into your local Maven repository which is shared by all your projects. 
Switch to the dependent project and make any changes there (e.g., that rely on a new API you introduced in hadoop-common). 
Finally, create separate patches for your common and hdfs/mapred changes, and file them as separate JIRA issues associated with the 
appropriate projects.  

Contributing your work

Please note that the commits in the GitHub PR should be granted license to ASF for inclusion in ASF works (as per the  §5).Apache License  
Folks should run mvn clean install javadoc:javadoc checkstyle:checkstyle before opening PR. 

https://wiki.apache.org/hadoop/HowToDevelopUnitTests
https://github.com/apache/hadoop
https://cwiki.apache.org/confluence/display/HADOOP/GitHub+Integration
https://wiki.apache.org/hadoop/TestPatchTips
https://wiki.apache.org/hadoop/MapReduce
https://wiki.apache.org/hadoop/MapReduce
http://www.apache.org/licenses/LICENSE-2.0
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Tests must all pass. 
Javadoc should report   warnings or errors.no  
The Javadoc on java 8 must not fail.
Checkstyle's error count should not exceed that listed at lastSuccessfulBuild/artifact/trunk/build/test/checkstyle-errors.html 

Jenkins's tests are meant to double-check things, and not be used as a primary patch tester, which would create too much noise on the mailing 
list and in PR.
If your patch involves performance optimizations, they should be validated by benchmarks that demonstrate an improvement. 
If your patch creates an incompatibility with the latest major release, then you must set the   flag on the issue's Jira 'and' fill Incompatible change
in the   field with an explanation of the impact of the incompatibility and the necessary steps users must take.Release Note  
If your patch implements a major feature or improvement, then you must fill in the   field on the issue's Jira with an explanation of the Release Note
feature that will be comprehensible by the end user.  

Once a "+1" comment is received from the automated patch testing system and a code reviewer has set the   flag on the issue's Jira, a committer Reviewed
should then evaluate it within a few days and either: commit it; or reject it with an explanation.  

Please be patient. Committers are busy people too. If no one responds to your patch after a few days, please make friendly reminders. Please incorporate 
other's suggestions into your patch if you think they're reasonable. Finally, remember that even a patch that is not committed is useful to the community.

Submitting patches against object stores such as Amazon S3, OpenStack Swift and Microsoft Azure

The modules hadoop-aws, hadoop-openstack and hadoop-azure contain filesystem clients which work with Amazon S3,   Swift and Microsoft OpenStack
Azure storage respectively.  

The test suites for these modules are not executed on Jenkins because they need credentials to work with.  

Having Jenkins +1 any patch against an object store does not mean the patch works: it must be manually tested by the submitter, the 
committer and any other reviewers who can do so  

If a Yetus patch run says +1 for an object store patch, all it means is "the compilation, javadoc and style checks passed". It does not mean the patch 
works, or that it is ready to be committed.  

The details of how to test for these object stores are covered  .in the filesystem specification documentation   

When submitting a patch, make sure the patch does not include any of your secret credentials. The Hadoop .gitignore file is set to ignore specific XML test 
resources for this purpose.  

 hadoop-common-project/hadoop-common/src/test/resources/contract-test-options.xml
hadoop-tools/hadoop-openstack/src/test/resources/contract-test-options.xml 
hadoop-tools/hadoop-aws/src/test/resources/auth-keys.xml 
hadoop-tools/hadoop-aws/src/test/resources/contract-test-options.xml 
hadoop-tools/hadoop-azure/src/test/resources/azure-auth-keys.xml 

Please state which infrastructures you have tested against, —including which regions you tested against. If you have not tested the patch yourself, do not 
expect anyone to look at the patch.  

We welcome anyone who can test these patches: please do so and again, declare what you have tested against. That includes in-house/proprietary 
implementations of the APIs as well as public infrastructures.  

Requesting for a Jira account

If you wish to contribute to Hadoop and require a Jira account, such requests can be made via: https://selfserve.apache.org/jira-account.html

Note:

Jira account is required only if someone has to report a bug or plan to contribute, other cases are unnecessary to request account.
Serving such requests can take time upto one week or even more during holidays.
Please refrain from sending the form multiple times or sending follow-ups on the mailing lists.

Jira Guidelines

Please comment on issues in Jira, making their concerns known. Please also vote for issues that are a high priority for you.  

Please refrain from editing descriptions and comments if possible, as edits spam the mailing list and clutter Jira's "All" display, which is otherwise very 
useful. Instead, preview descriptions and comments using the preview button (on the right) before posting them. Keep descriptions brief and save more 
elaborate proposals for comments, since descriptions are included in Jira's automatically sent messages. If you change your mind, note this in a new 
comment, rather than editing an older comment. The issue should preserve this history of the discussion.  

Additionally, do not set the Fix Version. Committers use this field to determine which branches have had patches committed. Instead, use the Affects and 
Target Versions to notify others of the branches that should be considered.  

Stay involved

Contributors should join the  . In particular, the commit list (to see changes as they are made), the dev list (to join discussions of Hadoop mailing lists
changes) and the user list (to help others).  

https://wiki.apache.org/hadoop/OpenStack
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/filesystem/testing.html
https://selfserve.apache.org/jira-account.html
https://hadoop.apache.org/mailing_lists.html


See Also

Apache contributor documentation 
Apache voting documentation

http://www.apache.org/dev/contributors.html
http://www.apache.org/foundation/voting.html
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