Tutorial-Example-Reportincident-Part4

Part 4

Introduction

This section is about regular Camel. The examples presented here in this section is much more in common of all the examples we have in the Camel
documentation.

1 Ifyou have been reading the previous 3 parts then, this quote applies:

you must unlearn what you have learned
Master Yoda, Star Wars IV

So we start all over again! %2

Routing

Camel is particular strong as a light-weight and agile routing and mediation framework. In this part we will introduce the routing concept and how we can
introduce this into our solution.

Looking back at the figure from the Introduction page we want to implement this routing. Camel has support for expressing this routing logic using Java as
a DSL (Domain Specific Language). In fact Camel also has DSL for XML and Scala. In this part we use the Java DSL as its the most powerful and all
developers know Java. Later we will introduce the XML version that is very well integrated with Spring.

Before we jump into it, we want to state that this tutorial is about Developers not loosing control. In my humble experience one of the key fears of
developers is that they are forced into a tool/framework where they loose control and/or power, and the possible is now impossible. So in this part we stay
clear with this vision and our starting point is as follows:

® We have generated the webservice source code using the CXF wsdl2java generator and we have our ReportincidentEndpointimpl.java file where
we as a Developer feels home and have the power.

So the starting point is:

/*-k
* The webservice we have inpl enent ed.
*/
public class Reportlncident Endpointlnpl inplenents Reportlncident Endpoi nt {

/**

* This is the last solution displayed that is the npst sinple

*/

publ i c Qutput Reportlncident reportlncident(lnputReportlncident paraneters) {
/1 WE ARE HERE !!!
return null;

Yes we have a simple plain Java class where we have the implementation of the webservice. The cursor is blinking at the WE ARE HERE block and this is
where we feel home. More or less any Java Developers have implemented webservices using a stack such as: Apache AXIS, Apache CXF or some other
quite popular framework. They all allow the developer to be in control and implement the code logic as plain Java code. Camel of course doesn't enforce
this to be any different. Okay the boss told us to implement the solution from the figure in the Introduction page and we are now ready to code.

RouteBuilder

RouteBuilder is the hearth in Camel of the Java DSL routing. This class does all the heavy lifting of supporting EIP verbs for end-users to express the
routing. It does take a little while to get settled and used to, but when you have worked with it for a while you will enjoy its power and realize it is in fact a
little language inside Java itself. Camel is the only integration framework we are aware of that has Java DSL, all the others are usually only XML based.

As an end-user you usually use the RouteBuilder as of follows:

® create your own Route class that extends RouteBuilder
® implement your routing DSL in the configure method

So we create a new class ReportincidentRoutes and implement the first part of the routing:

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Routes

i mport org.apache. canel . bui | der. Rout eBui | der;
public class Reportlnci dent Routes extends RouteBuil der {

public void configure() throws Exception {
/] direct:start is a internal queue to kick-start the routing in our exanple
/1 we use this as the starting point where you can send nmessages to direct:start
from{("direct:start")
/Il to is the destination we send the nessage to our velocity endpoi nt
/1 where we transformthe nail body
.to("vel ocity: Mail Body. vni');

What to notice here is the configure method. Here is where all the action is. Here we have the Java DSL langauge, that is expressed using the fluent
builder syntax that is also known from Hibernate when you build the dynamic queries etc. What you do is that you can stack methods separating with the
dot.

In the example above we have a very common routing, that can be distilled from pseudo verbs to actual code with:

fromAtoB

From Endpoint A To Endpoint B
from("endpointA”).to("endpointB")
from("direct:start").to("velocity:MailBody.vm");

from("direct:start") is the consumer that is kick-starting our routing flow. It will wait for messages to arrive on the direct queue and then dispatch the
message.
to("velocity:MailBody.vm") is the producer that will receive a message and let Velocity generate the mail body response.

So what we have implemented so far with our ReportincidentRoutes RouteBuilder is this part of the picture:

e
P C
Translator
Mail
Message

Adding the RouteBuilder

Now we have our RouteBuilder we need to add/connect it to our CamelContext that is the hearth of Camel. So turning back to our webservice
implementation class ReportincidentEndpointimpl we add this constructor to the code, to create the CamelContext and add the routes from our route
builder and finally to start it.

private Canel Context context;

public Reportlncident Endpointlnpl () throws Exception {
/] create the context
context = new Defaul t Canel Cont ext ();

/1 append the routes to the context
cont ext . addRout es(new Report | nci dent Routes());

/1 at the end start the canel context
context.start();

Okay how do you use the routes then? Well its just as before we use a ProducerTemplate to send messages to Endpoints, so we just send to the direct:
start endpoint and it will take it from there.
So we implement the logic in our webservice operation:

https://cwiki.apache.org/confluence/display/CAMEL/Direct

/**
* This is the last solution displayed that is the npst sinple
*/
publ i c QutputReportlncident reportlncident(lnputReportlncident paraneters) {
oj ect mai | Body = context.createProducer Tenpl ate().sendBody("direct:start", paraneters);
System out. println("Body:" + nuil Body);

/1l return an K reply

Qut put Reportlncident out = new Qut put Reportlncident();
out . set Code(" CK");

return out;

Notice that we get the producer template using the createProducerTemplate method on the CamelContext. Then we send the input parameters to the dir
ect:start endpoint and it will route it to the velocity endpoint that will generate the mail body. Since we use direct as the consumer endpoint (=from) and
its a synchronous exchange we will get the response back from the route. And the response is of course the output from the velocity endpoint.
@ About creating ProducerTemplate
In the example above we create a new Pr oducer Tenpl at e when the r epor t | nci dent method is invoked. However in reality you should

only create the template once and re-use it. See this FAQ entry.

We have now completed this part of the picture:

Incident
Message I

— S
S— g [:

Web Translator
Service Mail

Message

ok <

Reply —_——— === — =

Unit testing

Now is the time we would like to unit test what we got now. So we call for camel and its great test kit. For this to work we need to add it to the pom.xml

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -core</artifactld>
<versi on>1. 4. 0</ ver si on>
<scope>t est </ scope>
<type>test-jar</type>

</ dependency>

After adding it to the pom.xml you should refresh your Java Editor so it pickups the new jar. Then we are ready to create out unit test class.
We create this unit test skeleton, where we extend this class Cont ext Test Suppor t

https://cwiki.apache.org/confluence/display/CAMEL/Why+does+Camel+use+too+many+threads+with+ProducerTemplate

package org. apache. canel . exanpl e. reportinci dent;

i nport org. apache. canmel . Cont ext Test Support ;
i mport org.apache. canel . bui | der. Rout eBui | der;

/*-k

* Unit test of our routes

*/

public class ReportlncidentRoutesTest extends ContextTest Support {

}

Cont ext Test Support is a supporting unit test class for much easier unit testing with Apache Camel. The class is extending JUnit TestCase itself so you
get all its glory. What we need to do now is to somehow tell this unit test class that it should use our route builder as this is the one we gonna test. So we
do this by implementing the cr eat eRout eBui | der method.

@verride
protected RouteBuil der createRouteBuilder() throws Exception {
return new Reportlnci dent Routes();

}

That is easy just return an instance of our route builder and this unit test will use our routes.

@ It is quite common in Camel itself to unit test using routes defined as an anonymous inner class, such as illustrated below:

protected RouteBuil der createRouteBuilder() throws Exception {
return new RouteBuil der() {
public void configure() throws Exception {
// TODO Add your routes here, such as:
from("jms: queue:inbox").to("file://target/out");

The same technique is of course also possible for end-users of Camel to create parts of your routes and test them separately in many test
classes.
However in this tutorial we test the real route that is to be used for production, so we just return an instance of the real one.

We then code our unit test method that sends a message to the route and assert that its transformed to the mail body using the Velocity template.

public void testTransfornvail Body() throws Exception {
/] create a dummy input with sonme input data
I nput Reportlncident paraneters = createl nput();

/1 send the nessage (using the sendBody nethod that takes a paraneters as the input body)
// to "direct:start" that kick-starts the route

/1 the response is returned as the out object, and its also the body of the response

Obj ect out = context.createProducer Tenpl ate().sendBody("direct:start", paraneters);

/] convert the response to a string using canmel converters. However we could al so have casted it to
// a string directly but using the type converters ensure that Camel can convert it if it wasn't a

string

/1 in the first place. The type converters in Canel is really powerful and you will later learn to
/] appreciate them and wonder why its not build in Java out-of -t he-box
String body = context.getTypeConverter().convertTo(String.class, out);
/1 do some sinple assertions of the nmail body
assert True(body. startsWth("Incident 123 has been reported on the 2008-07-16 by C aus Ibsen."));

}

/**

* Creates a dummy request to be used for input
*/
protected | nputReportlncident createlnput() {
I nput Reportlncident input = new | nput Reportlncident();
i nput.setlncidentld("123");
i nput . set | nci dent Dat e("2008-07-16");
i nput. set G venNanme("d aus");
i nput . set Fami | yNane("| bsen");
i nput . set Summary("bla bla");
input.setDetails("nmore bla bla");
i nput . set Emai | ("davscl aus@pache. org");
i nput . set Phone(" +45 2962 7576");
return input;

Adding the File Backup

The next piece of puzzle that is missing is to store the mail body as a backup file. So we turn back to our route and the EIP patterns. We use the Pipes and
Filters pattern here to chain the routing as:

public void configure() throws Exception {
from"direct:start")
.to("vel oci ty: Mai | Body. vni')
/'l using pipes-and-filters we send the output fromthe previous to the next
.to("file://target/subfolder");

Notice that we just add a 2nd .to on the newline. Camel will default use the Pipes and Filters pattern here when there are multi endpoints chained liked
this. We could have used the pipeline verb to let out stand out that its the Pipes and Filters pattern such as:

from("direct:start")
/1 using pipes-and-filters we send the output fromthe previous to the next
. pipeline("velocity: Mail Body.vni', "file://target/subfolder");

But most people are using the multi .to style instead.

We re-run out unit test and verifies that it still passes:

https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters

Runni ng org. apache. canel . exanpl e. reportinci dent. Report | nci dent Rout esTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Tine el apsed: 1.157 sec

But hey we have added the file producer endpoint and thus a file should also be created as the backup file. If we look in the t ar get / subf ol der we can
see that something happened.

On my humble laptop it created this folder: target\subfolder\ID-claus-acer. So the file producer create a sub folder named | D- cl aus- acer what is this?
Well Camel auto generates an unique filename based on the uniqgue message id if not given instructions to use a fixed filename. In fact it creates another
sub folder and name the file as: target\subfolder\ID-claus-acer\3750-1219148558921\1-0 where 1-0 is the file with the mail body. What we want is to use
our own filename instead of this auto generated filename. This is archived by adding a header to the message with the filename to use. So we need to add
this to our route and compute the filename based on the message content.

Setting the filename

For starters we show the simple solution and build from there. We start by setting a constant filename, just to verify that we are on the right path, to instruct
the file producer what filename to use. The file producer uses a special header Fi | eConponent . HEADER _FI LE_NAME to set the filename.

What we do is to send the header when we "kick-start" the routing as the header will be propagated from the direct queue to the file producer. What we
need to do is to use the Pr oducer Tenpl at e. sendBodyAndHeader method that takes both a body and a header. So we change out webservice code
to include the filename also:

publi c Qut put Reportlncident reportlncident(lnputReportlncident paraneters) {
/] create the producer tenplate to use for sending nessages
Producer Tenpl at e producer = context.createProducer Tenpl ate();
/1 send the body and the filenane defined with the special header key
oj ect mai | Body = producer.sendBodyAndHeader ("direct:start", paraneters, FileConponent.
HEADER_FI LE_NAME, "incident.txt");
System out. println("Body:" + mail Body);

/1 return an K reply

Qut put Reportlncident out = new Qutput Reportlncident();
out . set Code(" CK");

return out;

However we could also have used the route builder itself to configure the constant filename as shown below:

public void configure() throws Exception {
from("direct:start")
.to("vel oci ty: Mai | Body. vni')
/'l set the filename to a constant before the file producer receives the nessage
. set Header (Fi | eConponent . HEADER_FI LE_NAME, constant ("incident.txt"))
.to("file://target/subfolder");

But Camel can be smarter and we want to dynamic set the filename based on some of the input parameters, how can we do this?

Well the obvious solution is to compute and set the filename from the webservice implementation, but then the webservice implementation has such logic
and we want this decoupled, so we could create our own POJO bean that has a method to compute the filename. We could then instruct the routing to
invoke this method to get the computed filename. This is a string feature in Camel, its Bean binding. So lets show how this can be done:

Using Bean Language to compute the filename

First we create our plain java class that computes the filename, and it has 100% no dependencies to Camel what so ever.

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language

/**

* Plain java class to be used for filenane generation based on the reported incident
*/

public class Fil enaneGenerator {

public String generateFil ename(Il nput Reportlncident input) {
/1 conmpute the filenane
return "incident-" + input.getlncidentld() + ".txt";

The class is very simple and we could easily create unit tests for it to verify that it works as expected. So what we want now is to let Camel invoke this
class and its generateFilename with the input parameters and use the output as the filename. Pheeeww is this really possible out-of-the-box in Camel?
Yes it is. So lets get on with the show. We have the code that computes the filename, we just need to call it from our route using the Bean Language:

public void configure() throws Exception {
from("direct:start")

/] set the filename using the bean | anguage and call the FilenaneGenerator class.
/1 the 2nd null paraneter is optional nmethodnane, to be used to avoid anbiguity.
/1 if not provided Canmel will try to figure out the best nmethod to i nvoke, as we
/1 only have one method this is very sinple
. set Header (Fi | eConponent . HEADER_FI LE_NAME, BeanlLanguage. bean(Fi | enameGenerator.class, null))
.to("vel oci ty: Mai | Body. vni')
.to("file://target/subfolder");

Notice that we use the bean language where we supply the class with our bean to invoke. Camel will instantiate an instance of the class and invoke the
suited method. For completeness and ease of code readability we add the method name as the 2nd parameter

. set Header (Fi | eConponent . HEADER_FI LE_NAME, BeanLanguage. bean(Fi | enanmeGener at or. cl ass,
"gener at eFi | enane"))

Then other developers can understand what the parameter is, instead of nul | .

Now we have a nice solution, but as a sidetrack | want to demonstrate the Camel has other languages out-of-the-box, and that scripting language is a first
class citizen in Camel where it etc. can be used in content based routing. However we want it to be used for the filename generation.

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language

Using a script language to set the filename

We could do as in the previous parts where we send the computed filename as a message header when we "kick-start" the route. But we want
to learn new stuff so we look for a different solution using some of Camels many Languages. As OGNL is a favorite language of mine (used by
WebWork) so we pick this baby for a Camel ride. For starters we must add it to our pom.xml:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -ognl </artifactld>
<ver si on>${ canel - ver si on} </ ver si on>
</ dependency>

And remember to refresh your editor so you got the new .jars.

We want to construct the filename based on this syntax: mai | - i nci dent - #1 D#. t xt where #ID# is the incident id from the input parameters.
As OGNL is a language that can invoke methods on bean we can invoke the get | nci dent |1 d() on the message body and then concat it with
the fixed pre and postfix strings.

In OGNL glory this is done as:

mai |l -incident-' + request.body.incidentld + '.txt"'"

where r equest . body. i nci dent | d computes to:

® request is the IN message. See the OGNL for other predefined objects available
® body is the body of the in message
® incidentld will invoke the get | nci dent | d() method on the body.

The rest is just more or less regular plain code where we can concat strings.

Now we got the expression to dynamic compute the filename on the fly we need to set it on our route so we turn back to our route, where we
can add the OGNL expression:

public void configure() throws Exception {
from("direct:start")
/1 we need to set the filename and uses OGNL for this
. set Header (Fi | eConponent . HEADER_FI LE_NAME, QOgnl Expression. ognl ("' nail-incident-' + request.
body.incidentld + '.txt'"))
/1 using pipes-and-filters we send the output fromthe previous to the next
. pipeline("vel ocity: Mail Body. v, "file://target/subfolder");

And since we are on Java 1.5 we can use the static import of ognl so we have:

inmport static org.apache. canel .| anguage. ognl . Ognl Expr essi on. ognl ;

. set Header (Fi | eConponent . HEADER_FI LE_NAME, ognl ("' mail -incident-' + request.body.incidentld + '.
txt'"))

Notice the import static also applies for all the other languages, such as the Bean Language we used previously.

https://cwiki.apache.org/confluence/display/CAMEL/Languages
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Language

Whatever worked for you we have now implemented the backup of the data files:

Incident f
Message I
|)
< |_> >
Web Translator File
Service Mail Backup
Message

ox <

Reply - - = —— —— — = — — — — =

Sending the email

What we need to do before the solution is completed is to actually send the email with the mail body we generated and stored as a file. In the previous part
we did this with a File consumer, that we manually added to the CamelContext. We can do this quite easily with the routing.

i mport org.apache. canel . bui | der. Rout eBui | der;
public class Reportlnci dentRoutes extends RouteBuilder {

public void configure() throws Exception {
/] first part fromthe webservice -> file backup
from("direct:start")
. set Header (Fi | eConponent . HEADER_FI LE_NAME, bean(Fi |l enameGenerator.cl ass, "generateFilenane"))
.to("vel oci ty: Mai | Body. vni')
.to("file://target/subfolder");

/1 second part fromthe file backup -> send email
from("file://target/subfolder")

/1 set the subject of the enmil

. set Header ("subj ect”, constant("new incident reported"))

/'l send the ensil

.to("sntp://soneone@ ocal host ?passwor d=secr et & o=i nci dent @ryconpany. cont') ;

The last 3 lines of code does all this. It adds a file consumer from("file://target/subfolder"), sets the mail subject, and finally send it as an email.

The DSL is really powerful where you can express your routing integration logic.
So we completed the last piece in the picture puzzle with just 3 lines of code.

We have now completed the integration:
___ Mail
Message

Message

Incident :r
|
|

Web Translator File CPOIIing E l;ﬂailr
Service Mail Backup ansumer ndpoint
Message
OK <: , Integration Platform
Reply —_—— T T T T T T e e T — — — — — — — — — — — ——— —
Conclusion

We have just briefly touched the routing in Camel and shown how to implement them using the fluent builder syntax in Java. There is much more to the
routing in Camel than shown here, but we are learning step by step. We continue in part 5. See you there.

https://cwiki.apache.org/confluence/display/CAMEL/File2

Links

Introduction
Part 1
Part 2
Part 3
Part 4
Part 5
Part 6

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part6

	Tutorial-Example-ReportIncident-Part4

