KIP-378: Enable Dependency Injection for Kafka Streams
handlers

Status

Current state: Discarded (subsumed by KIP-832: Allow creating a producer/consumer using a producer/consumer config)
Discussion thread: here

JIRA: KAFKA-7527

Motivation

Whenever there is a need to introduce dependencies for handlers into a Kafka Streams project, additional steps used to be required to ensure this
process. One possibility was to provide dependencies inside a Map for a configure method during application configuration process and another one was
to create your own StreamsConfig class implementation with one method being overridden.

In Kafka 2.0.0, the latter option is marked as deprecated, which means it won't be available in upcoming versions. This implies, that projects which have
been using dependency injection for Kafka Streams handlers, in the future will be forced to use a Map for the configure method during application
configuration process instead.

Currently, the introduction of dependencies for Kafka Streams handler proceeds the following way:

Registration of an exception handler class in Kafka Streams configuration

Kafka Streams invokes a default constructor and creates an object out of provided class using reflection
Kafka Streams passes dependency configuration Map to the new instance's configure method
Dependencies are retrieved from the Map and have to be casted to a particular dependency type

PwprE

Therefore, if your exception handler needs some other dependency, you have to construct it ahead of time and insert into the Kafka Streams config Properti
es.

Afterwards, you need to retrieve it back in a configure method of your exception handler by extracting it from the Map and then casting it to an appropriate
interface/class.

In addition, the newly introduced TopologyTestDriver is also affected. There is no straightforward, easy to maintain and developer-friendly possibility to
benefit from dependency injection frameworks.

With respect to the mentioned above, developers experience major complication during testing and maintenance of Kafka Streams applications.

Public Interfaces

As a part of the proposed change, a deprecation annotation for three constructors in KafkaStreams class could be removed, in particular:
® public KafkaStreans(final Topol ogy topol ogy, final StreanmsConfig config)

® public KafkaStreans(final Topol ogy topol ogy, final StreamsConfig config, final KafkaCd ientSupplier
clientSupplier)

® public KafkaStreans(final Topol ogy topology, final StreamsConfig config, final Time time)

To enable easy testing with dependency injection frameworks (e.g., Spring), three additional constructors for the TopologyTestDriver class could be
introduced:

® public Topol ogyTestDriver(final Topol ogy topol ogy, final StreansConfig config)

® public Topol ogyTestDriver(final Topol ogy topol ogy, final StreamsConfig config, final |ong
initialWalld ockTi meMs)

® private Topol ogyTestDriver(final Internal Topol ogyBuilder builder, final StreansConfig config, final long ini
tial Val | A ockTi meMs)

Proposed Changes

One possible option is to override a method inside the StreamsConfig class and replace a reflection-based creation of a handler class by the means of
Spring dependency injection. Please consult example below:


https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=211882578
http://mail-archives.apache.org/mod_mbox/kafka-dev/201810.mbox/%3CCAAyirGttm7OumbqW7UivFNCA_s8yNsE6_UnYm9m7iBHkG4ZJ%3DQ%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-7527

public class MyStreamsConfig extends StreansConfig {
private final ApplicationContext applicationContext;

Spri ngAwar eSt reansConfi g(final Properties properties, final ApplicationContext applicationContext) {
super (properties);
this. applicationContext = applicationContext;

}

@verride
public <T> T get Configuredlnstance(final String key, final C ass<T> type) {

String[] beanNanesFor Type = applicati onCont ext. get BeanNanesFor Type(type);
if (beanNanesFor Type.length > 0) {
return applicati onCont ext. get Bean(type);

}

return super. get Configuredl nstance(key, type);

}
}

This offers two main advantages:
1. Spring can create dependencies for your beans. So that you don't need to construct and provide them inside a Kafka Streams configuration, as
well as extract and cast it on handler's side.
2. You are obtaining an automated control over new dependencies, introduced Kafka Streams handlers
One minor advantage is that your dependencies can be set into final fields.

The second option it to create an additional interface as indicated in the example below:

Java

public interface ConfiguredStreanmsFactory {
<T> T get Configuredl nstance(String key, dass<T> t);
<T> Li st<T> get Confi guredl nstances(String key, C ass<T> t);
<T> List<T> get Configuredl nstances(String key, Cass<T>t, Map<String, Object> configQOverrides);
<T> Li st<T> get Confi guredl nstances(Li st<String> cl assNanes, C ass<T> t, Map<String, Object>
configOverrides);

}

And then provide the implementation of ConfiguredStreamsFactory while creating StreamsConfig:

Java

new StreanmsConfig(final Properties config, final ConfiguredStreansFactory configuredStreansFactory);

A default implementation could be provided as well, based on the current implementation:



Java

public <T> T get Configuredl nstance(String key, C ass<T>1t) {
Cl ass<?> ¢ = getd ass(key);
if (c ==null)
return null;
oject o = Wils.new nstance(c);
if (I't.islnstance(0))
t hrow new Kaf kaException(c. get Nane() +
if (o instanceof Configurable)
((Configurable) o).configure(originals());
return t.cast(0);

is not an instance of " + t.getNane());

public <T> List<T> getConfiguredlnstances(String key, Cass<T>t) {
return get Configuredl nstances(key, t, Collections.enptyMap());
}

public <T> List<T> get Configuredlnstances(String key, Cass<T>t, Map<String, Object> configOverrides) {
return get Configuredl nstances(getList(key), t, configOverrides);
}

public <T> List<T> get Configuredl nstances(List<String> classNanmes, C ass<T> t, Map<String, bject>
configOverrides) {
Li st <T> objects = new ArrayList<>();
if (classNanes == null)
return objects;
Map<String, Object> configPairs = originals();
configPairs. put All (configQOverrides);
for (Object klass : classNames) {
oj ect o;
if (klass instanceof String) {
try {
o = Uils.new nstance((String) klass, t);
} catch (O assNot FoundException e) {
t hrow new Kaf kaExcepti on(klass + " C assNot FoundExcepti on exception occurred”, e);
}
} else if (klass instanceof O ass<?>) {
o = Uils.new nstance((Cd ass<?>) klass);
} else
t hrow new Kaf kaException("List contains elenment of type " + klass.getC ass().getNane() + ",
expected String or dass");
if (I't.islnstance(0))
t hrow new Kaf kaExcepti on(kl ass +
if (o instanceof Configurable)
((Configurable) o).configure(configPairs);
obj ects. add(t.cast(0));

is not an instance of " + t.getNane());

}

return objects;

Compatibility, Deprecation, and Migration Plan

In case the first option is chosen, it is necessary to remove deprecation from three KafkaStreams constructors described in "Public interfaces" section.

Alternatively, the second option can be applied. Although, the second option needs to be studied in detail.

Rejected Alternatives

None at this point of time.



	KIP-378: Enable Dependency Injection for Kafka Streams handlers

