
StockTrader Business Service
Description
The is responsible for providing an interface to clients for the state of the application as a whole. It provides access to data StockTrader Business Service
within the directly, as well as passing off buy and sell orders to the queue managed by the . StockTrader Database StockTrader Order Processor Service
Nearly all interactions (including read-only) interactions with any data managed by the , will flow through the Stonehenge StockTrader Sample Application
Business Service at some point. This excludes only overall application configuration which is managed by a separate service.

Table of Contents

Description
Live Demonstrations
Service Operations

isOnline
login (deprecated in M2)
getOrders
getAccountData
getAccountProfileData
updateAccountProfile
logout (deprecated in M2)
buy
sell (deprecated)
getHoldings
register
getClosedOrders
getMarketSummary
getQuote
getHolding
getTopOrders
sellEnhanced

Live Demonstrations
In December of 2009, the PHP and .NET implementations of the StockTrader Business Service were ported to run on Windows Azure. These live cloud-
based versions of the can be accessed using the URLs in the table below:StockTrader Business Service

Implementation URL

PHP http://wso2wsastest1.cloudapp.net/php_stocktrader/business_service/business_svc.php

.NET http://stocktraderazure.cloudapp.net:8080/tradebusinessservice.svc

Service Operations
The port which exposes these operations is located under the namespace . This is due to ITradeServices http://trade.samples.websphere.ibm.com
historical reasons, and was originally done to ensure compatibility between the .NET Implementation of the StockTrader sample and IBM's original
implementation of the same. This was before the StockTrader sample became a part of Apache Stonehenge.

isOnline

The operation is a one-way service call that is used by clients of this service to determine if the service is running. It is employed in StockTrader isOnline
load-balanced scenarios to ensure application-level failover of service-to-service remote calls to clusters running this service.

Parameter Type Description Direction

loginReturn Void N/A out

login (deprecated in M2)

The operation is used to indicate that a login has occurred. It returns information about the account associated with the userID passed in. In the case login
of an error, the error message can be checked to determine why the login failed.

https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Database
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+StockTrader+Sample+Application
http://wso2wsastest1.cloudapp.net/php_stocktrader/business_service/business_svc.php
http://stocktraderazure.cloudapp.net:8080/tradebusinessservice.svc
http://trade.samples.websphere.ibm.com

In those implementations supporting claims based security, this service operation is not explicitly called whenever a user logs in. In subsequent service
calls that have a userID parameter, an empty string is sent instead, since the userID can be deduced from the claims included as part of the service call.

Parameter Type Description Direction

userID String Identifier of the user that is logging in in

password String Password of the user that is logging in in

loginReturn AccountDataBean Account data for the user that is logging in out

getOrders

The operation is used to retrieve recent orders placed by a given users. Orders are considered to be user instructions to buy sell a stock. getOrders or
This means that not every order will have a negative impact on the user's account balance. Additionally sell orders are not associated with a specific
holding, as they may include only a portion of an existing holding. Buy orders, on the other hand, will always become a new holding.

Each implementations can control the number of orders returned, and it is not guaranteed to be a complete list of all orders ever placed. Those
implementations that support claims-based security will accept an empty string in place of a userID, since the userID can be deduced from the claims
included as part of the service call.

Parameter Type Description Direction

userID String Identifier of the user for which to retrieve orders in

getOrdersReturn Array of OrderDataBean List of the orders placed by the user out

getAccountData

The operation is used to retrieve information about an account associated with a given userID. This data will contain purely statistical getAccountData
information about the account itself. In order to get information about the specifically, the operation should be used instead.user getAccountProfileData

Those implementations that support claims-based security will accept an empty string in place of a userID, since the userID can be deduced from the
claims included as part of the service call.

Parameter Type Description Direction

userID String Identifier of the user for which to get account data in

getAccountDataReturn AccountDataBean Account data for the user indiciated out

getAccountProfileData

The operation is used to retrieve authentication, contact, and payment information for a given user, based on the user's userID.getAccountProfileData

Those implementations that support claims-based security will accept an empty string in place of a userID, since the userID can be deduced from the
claims included as part of the service call.

Parameter Type Description Direction

userID String Identifier of the user for which to get account profile data in

getAccountProfileDataReturn AccountProfileDataBean Account profile data for the user indiciated out

updateAccountProfile

The operation is used to update account profile data for a given user with the data supplied. All data can be changed for a given updateAccountProfile
user, except for the user's userID.

Parameter Type Description Direction

profileData AccountProfileDataBean Updated account profile data to apply to an account in

updateAccountProfileReturn AccountProfileDataBean Updated account profile data that was passed in out

logout (deprecated in M2)

The operation is used to signal that a user has logged out of the client application.logout

In those implementations supporting claims based security, this service operation is not explicitly called whenever a user logs out.

Parameter Type Description Direction

https://cwiki.apache.org/confluence/display/STONEHENGE/AccountDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/OrderDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/AccountDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/AccountProfileDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/AccountProfileDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/AccountProfileDataBean

userID String Unique identifier of the user to log out of the system in

logoutReturn Void N/A out

buy

The operation is used to asynchronously register a buy order with the . By submitting an order through this buy StockTrader Order Processor Service
operation, there is no guarantees that the order will be successfully completed.

Those implementations that support claims-based security will accept an empty string in place of a userID, since the userID can be deduced from the
claims included as part of the service call.

Parameter Type Description Direction

userID String Unique identifier of the user that is placing an order in

symbol String Symbol for the stock of which the user is buying shares in

quantity Floating Point Number Number of shares of the stock that the user is buying in

orderProcessingMode Integer This parameter is no longer used, but instead is provided through configuration in

buyReturn OrderDataBean Order generated as a result of the request out

sell (deprecated)

The operation is used to asynchronously register a sell order with the . By submitting an order through this sell StockTrader Order Processor Service
operation, there is no guarantees that the order will be successfully completed.

This operation differs from the operation in that this operation always sells the entire holding. This operation has been retained for sellEnhanced
backwards compatibility with IBM Trade 6.1, as all implementations of the that are a part of the Apache Stonehenge StockTrader Sample Application
Stonehenge project use the operation.sellEnhanced

Those implementations that support claims-based security will accept an empty string in place of a userID, since the userID can be deduced from the
claims included as part of the service call.

Parameter Type Description Direction

userID String Unique identifier of the user that is placing an order in

holdingID Integer Unique identifier of the holding that the user is selling in

orderProcessingMode Integer This parameter is no longer used, but instead is provided through configuration in

sellReturn OrderDataBean Order generated as a result of the request out

getHoldings

The operation is used to retrieve a list of the user's holdings.getHoldings

Those implementations that support claims-based security will accept an empty string in place of a userID, since the userID can be deduced from the
claims included as part of the service call.

Parameter Type Description Direction

userID String Unique identifier of the user for which to get holdings in

getHoldingsReturn Array of HoldingDataBean A list of holdings associated with the user out

register

The operation is used to create an account and a new user within the StockTrader application.register

Those implementations that support claims-based security will not rely on the password used here for user authentication. A Passive STS will be used for
authentication of a user with a third party. The claims passed from that Passive STS will determine whether or not the user is authorized to perform the
actions requested.

Parameter Type Description Direction

userID String Unique identifier of the user for which to register an account in

password String Password that the user must use for authentication in

fullname String Full name of the user in

address String Billing address of the user in

email String Email address of the user in

creditcard String Credit card number of the user in

https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/OrderDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+StockTrader+Sample+Application
https://cwiki.apache.org/confluence/display/STONEHENGE/OrderDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/HoldingDataBean

openBalance Floating Point Number Opening balance for the account associated with the user in

registerReturn AccountDataBean Account created as a result of the service call out

getClosedOrders

The operation is used to get a list of the orders where the status is set to . This allows orders to be displayed to the user when getClosedOrders closed
accessing the . Orders returned as a result of calling this operation will be marked as , and will not be reported again by StockTrader Client completed
subsequent calls.

Parameter Type Description Direction

userID String Unique identifier of the user for which to retrieve closed orders in

getClosedOrdersReturn Array of OrderDataBean List of orders that have closed out

getMarketSummary

The operation is used to retrieve a summary of the current market conditions.getMarketSummary

Parameter Type Description Direction

getMarketSummaryReturn MarketSummaryDataBeanWS Contains the current market summary out

getQuote

The operation is used to generate a quote for a given stock.getQuote

Parameter Type Description Direction

symbol String The symbol of the stock for which to generate a quote in

getQuoteReturn QuoteDataBean Quote for the stock requested out

getHolding

The operation is used to retrieve details about a specific holding of a given user. Even though the holdingID should be unique for all holdings, getHolding
a userID is supplied for this service call as well to ensure absolutely that the correct holding is located.

Those implementations that support claims-based security will accept an empty string in place of a userID, since the userID can be deduced from the
claims included as part of the service call.

Parameter Type Description Direction

userID String Unique identifier of the user that is associated with the account that the holding has been associated with as well in

holdingID Integer Unique identifier of the holding for which to retrieve information in

getHoldingReturn HoldingDataBean Holding that was requested out

getTopOrders

The operation is used to retrieve the top orders for a given user. Each implementation is responsible for determining the number of getTopOrders N
orders that will be returned.

Those implementations that support claims-based security will accept an empty string in place of a userID, since the userID can be deduced from the
claims included as part of the service call.

Parameter Type Description Direction

userID String Unique identifier of the user for which the top orders should be retrieved in

getTopOrdersReturn Array of OrderDataBean List of the top orders made by the given user out

sellEnhanced

The operation is used to asynchronously register a sell order with the . By submitting an order through sellEnhanced StockTrader Order Processor Service
this operation, there is no guarantees that the order will be successfully completed.

This operation differs from the operation in that this operation allows for the partial sale of holdings. All implementations of the sell Stonehenge
 that are a part of the Apache Stonehenge project use the operation as opposed to the operation for StockTrader Sample Application sellEnhanced sell

handling the sale of holdings.

https://cwiki.apache.org/confluence/display/STONEHENGE/AccountDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Client
https://cwiki.apache.org/confluence/display/STONEHENGE/OrderDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/MarketSummaryDataBeanWS
https://cwiki.apache.org/confluence/display/STONEHENGE/QuoteDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/HoldingDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/OrderDataBean
https://cwiki.apache.org/confluence/display/STONEHENGE/StockTrader+Order+Processor+Service
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+StockTrader+Sample+Application
https://cwiki.apache.org/confluence/display/STONEHENGE/Stonehenge+StockTrader+Sample+Application

Those implementations that support claims-based security will accept an empty string in place of a userID, since the userID can be deduced from the
claims included as part of the service call.

Parameter Type Description Direction

userID String Unique identifier of the user that is placing an order in

holdingID Integer Unique identifier of the holding that the user is selling in

quantity Floating Point Number Number of shares of the stock that the user is selling in

sellEnhancedReturn OrderDataBean Order generated as a result of the request out

https://cwiki.apache.org/confluence/display/STONEHENGE/OrderDataBean

	StockTrader Business Service

