
CLion setup for MXNet C++ development on Mac and
Linux__

A. Local setup
Step 1. Install prerequisites

1.1. Install and configure git
1.2. Configure SSH for GitHub
1.3. Install git-secrets
1.4. Install Xcode

Step 2. Get the MXNet codebase
2.1. Fork the Apache MXNet repository
2.2. Clone your fork on your machine

Step 3. Install additional tools
3.1. Install CMake
3.2. Install a compiler

Option 1. Install LLVM
Option 2. Install gcc

3.3. Install ccache
3.4. Install jemalloc

Step 4. CLion setup
4.1. Select toolchain
4.2. Build configuration
4.3. Set CMake options
4.4. Run tests

Step 5. Select a style file (optional)
5.1. Loading a style file

B. Remote host development

This page will guide you through the process of setting up CLion for MXNet C++ development on Mac. It covers two different setups: a one, where local
both the coding and building are done in your laptop, and a . This second option is based on a new feature in CLion v2018.3 which enables remote setup
remote project support.

 A. Local setup

Step 1. Install prerequisites

These are not required, but they are recommended practices. The next steps assume that , the package manager manager for macOS, is Homebrew
installed in your device. Otherwise, it can easily be installed by running the following command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

1.1. Install and configure git

brew install git
git config --global user.name "<USERNAME>"

1.2. Configure SSH for GitHub

Using SSH, you can connect to GitHub without having to input your credentials every time yo do so. This is not necessary, but it is convenient and time
saving in the long run. The steps to configure SSH for this task can be found on .GitHub's FAQ

1.3. Install git-secrets

Git-secrets is a tool that prevents you from committing passwords or sensitive information to your repository. More information can be found on git-secrets'
.GitHub repo

brew install git-secrets

After installing git-secrets, you must install the hooks for every repo that you wish to use with git secrets install.

https://brew.sh/
https://help.github.com/articles/connecting-to-github-with-ssh/
https://github.com/awslabs/git-secrets
https://github.com/awslabs/git-secrets

1.4. Install Xcode

Download and install Xcode, which contains a suite of software development tools by Apple. It also includes the Xcode IDE, although here we will use
CLion as IDE instead. Newer versions of Xcode might not be compatible with your macOS version, you can check the .requirements here

Next, you will need to accept Xcode's license. It can be done from the command line:

sudo xcodebuild -license accept

Step 2. Get the MXNet codebase

Once you have installed the required tools, it is time to get the project's code.

2.1. Fork the Apache MXNet repository

MXNet is hosted in a GitHub repository, . The best practice for development is to fork this incubator-mxnet
repository and work on your local copy.

Go to https://github.com/apache/incubator-mxnet
Click the fork button on the top right.

2.2. Clone your fork on your machine

git clone --recursive https://github.com/<YOUR GITHUB USERNAME>/incubator-mxnet

Next, set git secrets to track the repository with git secrets install.

cd incubator-mxnet
git secrets install

Once the repo is being tracked, you can add different prohibited patterns for git-secrets to control. Check for further instructions on how the documentation
to add patterns, exceptions and other utilities.

Step 3. Install additional tools

Before installing CLion, there is a set of tools for compiling C++ projects which we need to install.

3.1. Install CMake

CMake is an application to manage builds in a compiler independent way. Installing it with Homebrew is straightforward:

brew install cmake

3.2. Install a compiler

To download an older version of Xcode, scroll down in the downloads page and click the link.See more downloads

https://developer.apple.com/xcode/
https://xcodereleases.com/
https://github.com/apache/incubator-mxnet
https://github.com/apache/incubator-mxnet
https://github.com/awslabs/git-secrets#options-for-add
https://github.com/awslabs/git-secrets#options-for-add

MXNet uses , an API for high level parallelism in C++ programs, which is not built in the default C++ compiler in recent versions of macOS. The OpenMP
simplest workaround is to install either LLVM or GCC as compilers.

Option 1. Install LLVM

LLVM is a collection of compiler and toolchain technologies. It contains Clang, a C++ compiler which delivers fast compiles, as well as other useful tools
such as clang-format. It can be installed via Homebrew (be aware that the build might take a long time).

brew install --with-toolchain llvm

Option 2. Install gcc

An alternative to LLVM is GCC, GNU's Compiler Collection. Although slower than Clang, it can also be used to compile MXNet. It can easily be installed
with Homebrew.

brew install gcc

3.3. Install ccache

Quoting the documentation, is a compiler cache which speeds up recompilation by caching previous compilations and detecting when the same ccache
compilation is being done again.

brew install ccache

3.4. Install jemalloc

MXNet can use for memory allocation, whichjemalloc is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable
concurrency support.

brew install jemalloc

Step 4. CLion setup

Start by from JetBrains' website and installing it.downloading CLion

Once the installation process is finished, a welcome dialog will pop up. Choose > select the file >Open incubator-mxnet/CMakeLists.txt Open as
.Project

https://www.openmp.org/
https://llvm.org/
https://ccache.samba.org/
http://jemalloc.net
https://www.jetbrains.com/clion/

1.
2.

Next, we will modify the preferences to use the C++ compiler we previously downloaded, as well as CMake and ccache. Open up the preferences window
from > (or + ,) and proceed to the next step.CLion Preferences

4.1. Select toolchain

 In the preferences window (+ ,), search for .toolchains
Click on the + sign to add a toolchain, name it and set the paths of the C and C++ compilers. These paths will depend on the compiler you chose

on step 3.2. If you followed the steps above, they should be:

1.
2.
3.
4.

LLVM GCC

C /usr/local/Cellar/llvm/7.0.0/bin
/clang

/usr/local/bin/gcc-8

C++ /usr/local/Cellar/llvm/7.0.0/bin
/clang++

/usr/local/bin/g++-8

4.2. Build configuration

In the preferences window, search for , under the section.CMake Build, Execution, Deployment
Add a new profile using the + button on the bottom and give it a name of your choice.
Set the toolchain to the one we defined in 4.1.
Define the CMake options (explained in the next step, 4.3).

If you use Finder to browse for the compiler paths, use + + . to show hidden folders.

4.3. Set CMake options

The following options are used in order to be able to compile in a Mac:

Option Effect

-DUSE_CUDA=OFF Disables CUDA. Unless your Mac has a GPU and CUDA installed, this option should
be turned off.

-DBLAS=apple Choose a BLAS (Basic Linear Algebra Subprograms) library. Setting it to 'apple' will
select Apple's .Accelerate

-DUSE_OPENCV=OFF Disable OpenCV, which is not installed on macOS by default.

-DCMAKE_CXX_COMPILER_LAUNCHER=/usr/local/opt
/ccache/bin/ccache

Set the C, C++ and CUDA compilers to use ccache.

-DCMAKE_C_COMPILER_LAUNCHER=/usr/local/opt/ccache
/bin/ccache

-DCMAKE_CUDA_COMPILER_LAUNCHER=/usr/local/opt
/ccache/bin/ccache

If changing the preferences does not have any effect, you may need to reset CMake's cache. To do so, go to > > Tools CMake Reset Cache
and Reload Project.

https://developer.apple.com/documentation/accelerate

For linux without CUDA you can use the following options:

-DUSE_CUDA=OFF
-DUSE_OPENMP=ON
-DUSE_OPENCV=ON
-DUSE_MKL_IF_AVAILABLE=OFF
-DCMAKE_VERBOSE_MAKEFILE=OFF
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache
-DCMAKE_C_COMPILER_LAUNCHER=ccache
-DCMAKE_CUDA_COMPILER_LAUNCHER=ccache

 4.4. Run tests

To make sure everything is working properly, select as run configuration and run it. mxnet_unit_tests

To select specific unit tests, you can click Run "edit configurations" and add "–gtest_filter=" And a pattern like "SUITE.Test" such as --gtest_filter="
inv_khatri_rao.OneInputMatrixTransposed"

Step 5. Select a style file (optional)

CLion provides code generation and formatting tools which can come in handy when developing. Coding style can be defined in the preferences
dialogue to have CLion stick to certain coding guidelines. These can be loaded from an external style file, and
they can be applied at project level or globally, at IDE level.

5.1. Loading a style file

As a reference, you can use the following style file: .mxnet-style.xml

To load the style file, go to > search for > change Scheme to (so the coding Preferences code style Project
style will apply only to this project).

Next, click the settings icon () on the right > > and browse Import scheme Intellij IDEA code style XML
for the style file.

.

https://cwiki.apache.org/confluence/download/attachments/95651665/mxnet-style.xml?version=2&modificationDate=1542817475000&api=v2

1.

2.

3.

You can use Google C++ coding style as the default since it's the one we use in MXNet:

B. Remote host development

Since version 2018.3 (it is an experimental version as of the writing of this page), CLion will support remote projects. Using this feature, it is possible to
code locally in CLion and build, run and test on your remote machine. In order for this feature to work, you need:

A local client machine, which can be either macOS, Windows or Linux, with CLion 2018.3 or newer.
A Linux host, with installed (unless your local machine is running Windows, in which case is needed)rsync tar

To setup remote host development, simply:

Install the required tools (described in of this guide - specific installation commands will vary, as the remote has to run Linux) on your A.Step 3
remote machine.
Follow from Jetbrains' website to setup a remote toolchain and configure the SSH connection, as well as the mappings (where your this tutorial
project will be located on the remote host).
Set the appropriate CMake options. of this guide can be used s reference, although your options will depend on your remote host Section A.4.3
setup.

The first time you build remotely, CLion will sync your local files with the remote host. Depending on your connection, this process might take

some time. If you have previously built your project locally, make sure to run make clean before the sync takes place, so
there are less files to be copied.

https://blog.jetbrains.com/clion/2018/09/initial-remote-dev-support-clion/

	CLion setup for MXNet C++ development on Mac and Linux__

