
KIP-387: Fair Message Consumption Across Partitions in
KafkaConsumer

Status
Motivation
Public Interfaces
Proposed Changes

Status
Current state: Under Discussion

Discussion thread: [Change the link from the KIP proposal email archive to your own email thread]here

JIRA: [Change the link from KAFKA-1 to your own ticket]KAFKA-3932

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The KafkaConsumer API centers around the poll() API which is intended to be called in a loop. On every iteration of the loop, poll() returns a batch of
records from the partitions this consumer can retrieve at that time. The size of returned records is determined by the , as described in max.poll.records KIP-
41: KafkaConsumer Max Records. Currently the implementation will return available records starting from the last partition the last poll call retrieves
records from. This leads to unfair patterns of record consumption from multiple partitions.

This proposal discusses a mechanism to mitigate that issue.

Public Interfaces
No public interface changes is proposed.

Proposed Changes
The issue stems from the greedy consumption of a partition in serving a poll call, as described in of KIP-41, to be used again in Ensuring Fair Consumption
the next poll call, and so continue that greedy behavior against that previous partition in the next call.

The simplest solution is to pick another partition that has available records as the starting point for the next poll call. The current implementation keeps the
partitions with received records in a queue called inside the class, the main class to return records from the completedFetches consumer.internals.Fetcher
poll call. Partitions in that queue is ordered by when the receives the partition messages. We can pick the next partition from that queue to serve Fetcher
the next poll call instead. To avoid parsing the partition messages repeatedly, we can save those parsed fetches to a list () and maintain the parsedFetches
next partition to get messages there.

The logic will use partitions from to retrieve records in the original greedy fashion, and move them to the list after they completedFetches parsedFetches
are parsed. When queue is empty, it will consume records in partitions in the list in round robin order. The partition with completedFetches parsedFetches
parsing errors will be moved to the end of the queue to return records to the current and subsequent poll calls successfully.completedFetches

http://mail-archives.apache.org/mod_mbox/kafka-dev/201501.mbox/%3CCAOeJiJh6Vkkca85bWYgkeOZ8rC6%2BKDh7zzq8vMKECL_7PNExTA%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-3932
https://cwiki.apache.org/confluence/display/KAFKA/KIP-41%3A+KafkaConsumer+Max+Records
https://cwiki.apache.org/confluence/display/KAFKA/KIP-41%3A+KafkaConsumer+Max+Records
https://cwiki.apache.org/confluence/display/KAFKA/KIP-41%3A+KafkaConsumer+Max+Records#KIP-41:KafkaConsumerMaxRecords-EnsuringFairConsumption

	KIP-387: Fair Message Consumption Across Partitions in KafkaConsumer

