
JIRA Workflow Proposals
JIRA contains the entire project history, but as the project has matured our use of JIRA has not kept up. This page proposes some changes to the
structure of our JIRA project, to capture more information, simplify the data entry and nudge people towards more complete and accurate data entry. This
will better allow us to measure release quality over time and identify when Cassandra is ready for (or due a) release.

Summary

Removal of issues types: Wish and Test
Fields

Removed: Reviewer, Environment, Reproduced In, Docs Text, Due Date, Epic Link, External Issue Id, External Issue URL, Flags, Sprint,
Time Tracking
Modified: Priority, Component
Added: Complexity, Feature, Impacts, Test and Documentation Plan, Platform
Added (Bug only): Severity, Bug Category, Discovered By
Added (Improvement and Feature only): Change Category

Workflow
New States: Triage, Review in Progress, Change Requested
Transitions with required fields
Order of field display changed

Issue Permissions
Anybody may file a Triage ticket
Contributor role will be removed, and in all places replaced with jira-users.
Only jira-users will be permitted to transition a ticket in the workflow

Schema Permissions
Only committers will be permitted to introduce new options to the schema for the fields: Component, Feature, Platform. Removals can
be negotiated with the person who introduced them, or litigated on list.
All other fields should not have their schema-defined options modified without endorsement from the mailing list.

Removals

To simplify the maintenance of JIRA, it would help to remove any unnecessary concepts. Mostly these are concepts we do not use in practice, except very
spottily (so as to make them useless).

Remove Issue Types

Firstly, we propose the removal of the Wish and Test ticket types.

Issue Type Reason

Wish is a feature/improvement, and can be better communicated via priority/complexity details we will introduce below

Test is logically a component, and a non-specific one at that

Remove Fields

Field Reason Migration

Reviewer Replaced by Reviewers Populate empty Reviewers fields with contents of Reviewer

Environ
ment

Use is very patchy, noisy, and seemingly of little
value over a comment if the extra content is useful

Propose new multi-select 'Platform' field with curated option list, in detail below. We
can insert a comment with the environment text for any tickets containing it presently.

Reprodu
ced In

Use is very patchy; seems to offer little practical
value above 'Since Version' or a comment.

Docs
Text

Unused

Due
Date

Unused

Epic
Link

Unused

External
Issue ID

Unused

External
Issue
URL

Unused

Flags Unused

Sprint Unused

Time
Tracking

Unused

Migrate Labels

All labels that provide utility to the project and can be represented in the new schema should be migrated to the new schema, but the original labels will be
left intact.

remap cassandra jira labels.csv

Modifying/Expanding Existing Fields

Priority, Complexity, Severity and Category

Presently, Priority encodes some ill-defined combination of the first three of these independent properties, making it
hard to draw strong conclusions about any of them. We propose introducing two new fields, and clarifying the Priority
terminology to only suggest urgency, as well as reducing the number of priorities, since we don't effectively use them.

Priority

New
Priority

Logically
Replaces

Migrate
From

Details

Low Low-Minor Low-Minor

Normal Minor-Major Major It wasn't clear what Minor or Major meant, but priority is a relative concept - a 'normal' is our logical baseline, and
the default for a new issue

High Rest of Major For tickets that community members plan to prioritise over other outstanding work, but has no immediate urgency

Urgent Critical-Blocker Critical-
Blocker

There's limited logical distinction between Critical and Blocker; it seems to make more sense to have a single 'do
ASAP' tag.

This should be limited to issues that should both block (until completed) and accelerate (once completed) the next
release.

For the Bug type, this field will be auto-populated (if possible).

Complexity

This field will be required, discussed further in the Workflow section below.

Complexity Description Initial Value

Low Hanging Fruit Trivial, No Dependencies, Localised, Accessible to New Contributors Old Priority = Trivial or label=lhf

Normal Unremarkable; default

Challenging Localised, but requiring sophisticated analysis to understand

Byzantine Affecting many components, requiring sophisticated analysis to understand

Impossible Suspect this is not even possible (may be paired with Wish)

Bug Only Fields

Severity

This field will be required, discussed further in the Workflow section below. It will be available only for the Bug issue type.

Severity Old Priorities Description

Low Trivial-Low Limited usability or low visibility impact with no impact on correctness; no urgency to resolve

Normal Minor-Major This issue is either unremarkable or extraordinarily rare

Critical Critical-Urgent This bug may have significant impact on correctness, availability, stability or some other critical production behaviour

Discovered By

This field will be required for the Bug issue type. It will be used for analysis of our efforts to establish project quality.

https://cwiki.apache.org/confluence/download/attachments/97550740/remap%20cassandra%20jira%20labels.csv?version=1&modificationDate=1542660780000&api=v2

User Report
Code Inspection
New unit/dtest
Performance Regression Testing
Fuzz Testing
Workload Replay Testing (e.g. FQL)
Shadow Traffic Cluster
Adhoc Testing

Bug Category

Required. Only provided as an option for the Bug issue type. Uses a Cascading Select List.

Category Subcategory Description

Correctness Persistent Corruption / Loss Corruption that persists, and may propagate across the cluster

 Response Corruption / Loss Corruption that does not propagate or persist, only results in a client receiving erroneous responses

 Semantic Failure The logical behaviour is either not to spec, or the spec is faulty/ambiguous

 Consistency Failure Apparently successful action, but with lower consistency than required

 Test Failure A test is broken - if this turns out to be a legitimate bug, it should transition to the bug's category once
diagnosed

Availability Response Crash An operation does not succeed/respond because of a crash while servicing it, without affecting process
stability

 Process Crash An isolated exceptional state occurs that brings down the affected node

 Cluster Crash A correlated exceptional state occurs across the cluster, bringing down a multiplicity of nodes

 Unavailable Apparently unavailable, when should be available

Degradation Resource Management Either a resource leak or overcommit

 Slow Use Case A specific use case with suboptimal characteristics that have not yet been accommodated

 Performance Bug
/Regression

Unintended performance behaviour, including e.g. exceptions stalling compactions

 Other Exception An exception is being thrown, that is not coinciding with another category of degradation

Security Information Leakage

 Privilege Escalation

 Denial of Service

Remote code execution

/Bug Only Fields

Change Category

Required. This is the only field unique to the Feature and Improvement issue types.

Category Description

Performance

Change Semantics Introduce new, or clarify/modify existing database semantic behaviours

Improve Operability Reduce the burden of operating a cluster (i.e. handle uncommon states better, with less operator involvement)

Quality Assurance Work to improve the guarantees we can make about the stability and correctness of Cassandra

Component

Presently, the meaning of each component is unclear, even to long-serving project members. As such, it is very inconsistently
used and probably of limited value for analysis. We propose a more granular definition of components that more closely
matches the every day project vernacular.

The biggest difficulty here will be migration. It might be that a "Legacy" component is the best option, with the old schema replicated exactly. We can then
manually migrate tickets as the value presents itself, or organise such a transition.

Multi-select List

 Consistency/Coordination
 Consistency/Hints
 Consistency/Repair
 Consistency/Streaming
 Consistency/Bootstrap and Decommission
 Consistency/Batch Log
 Cluster/Membership
 Cluster/Gossip
 Cluster/Schema
 Local/Commit Log
 Local/Memtable
 Local/SSTable
 Local/Caching
 Local/Compaction
 Local/Compaction/DTCS
 Local/Compaction/TWCS
 Local/Compaction/LCS
 Local/Compaction/STCS
 Local/Config
 Local/Startup
 Local/Shutdown
 Local/Scripts
 Messaging/Internode
 Messaging/Native v4
 Messaging/Native v5
 Messaging/Thrift
 CQL/Syntax
 CQL/Interpreter
 Observability/JMX
 Observability/Metrics
 Observability/Tracing
 Observability/Logging
 Tools/fql
 Tools/cqlsh
 Tools/nodetool
 Tools/sstable
 Tools/bulk load
 Tools/stress
 Tests/dtest
 Tests/unit
 Tests/fuzz
 Tests/benchmark
 Docs/Javadoc
 Docs/Website
 Docs/Blog
 Packaging
 Dependencies
 Build

Feature

Features tend to cut across many components of the database. So an orthogonal field to track these, instead of ill-defined
labels is probably of utility. It is any way useful to track things like bugs per component/feature combination.
This field will not be required, since many tickets will not touch on features explicitly.

Lightweight Transactions
Counters
Change Data Capture
Transient Replication
2i Index
SASI
Materialized Views
Virtual Nodes
Virtual Tables
Authorization
Encryption
Compression
KMS/Vault
Super Columns
UDF
UDT
UDA

Other New Fields

Platform

1.
2.

3.

To replace the existing Environment field that is of limited value.
A curated list, that can only be modified by project members. Initially seeded with:

Java {7,8,9,10,11}
OpenJDK, Oracle Java, Azul, ...
Linux (major kernel versions), Windows, OpenBSD, ...
x86, ... (added as necessary)
NVMe, SSD, Magnetic HDDs
AWS, GCE, Azure

Impacts

To replace certain labels, and help external maintainers track features of relevance to them.
A curated list, that can only be modified by project members. Initially seeded with:

Clients
Docs
Security
JDBC
Spark
Hadoop

Test and Documentation Plan

A new required field containing free-form text field, required when transitioning to 'In Progress'.
The intended purpose is to encourage explicit upfront consideration of the work needed on these areas
either before or following commit. This may entail filing follow-up tickets that need to be resolved before release,
or a brief statement on the tests that will be written, or simply 'n/a'.
This also provides a promise to hold implementors to before release, and a point of discussion before a ticket lands.

Workflow

To encourage high quality data entry and better observability, we propose a few changes to the project workflow. We propose:

Introducing some new issue states to better track the current ticket status, and handover between responsible parties;
Making certain fields required during certain state transitions, to ensure we have the minimally necessary ticket information complete at each
stage'
Reordering the fields that we display on transition, to highlight the most important

New 'Triage' State

Currently it is easy for the project to miss a ticket, and for that ticket to fall through the cracks indefinitely.
At the same time, user reports cannot be expected to fill out all of the required fields accurately.
It's proposed that we introduce a new initial state named 'Triage' that has no required fields, and that anybody may file.
To transition to the Open state, you must be a contributor in JIRA (equivalent to able to assign tickets), and must ensure the required fields have been
correctly filled out before doing so.

New 'Review in Progress' and 'Change Requested' States

Presently there is no way to indicate that a patch is under active review, so it is hard for assignees to monitor the progress of their patch to
completion. Similarly, there is no useful way for the reviewer to indicate that their comments are ready to be addressed by the assignee. With the
introduction of these two states, there is a clear handover at each stage of the process. This makes it clear who is responsible for taking the patch forward
to the next step, as well as transparency over progress on any steps you are waiting on.

Removal of Reopened State

The Reopened state is of dubious value - arguably, it is in any scenario more helpful to file a new ticket, link the two via a relation, and leave a comment on
the original for interested parties to migrate to the new discussion. In any case, its use is frowned upon and rare. It will of course remain possible to move
a ticket from the 'Resolved' state to e.g. the Open state, but this will not be officially sanctioned except when correcting filing/procedural errors.

New Workflow

State Description Expected
Transitions (To)

Triage This ticket has been filed, perhaps by a member of the community, but has not been considered by a contributor
competent to assess its impact, severity, etc.

Before transitioning to Open, the contributor should consider updating the title and summary to best reflect the
report in a way the project will understand.

Awaiting Feedback,
Open, Resolved

Awaiting
Feedback

Most beneficial as a cyclical state between Triage and itself, as dialogue takes place to establish any facts needed
to understand, categorise and prioritise the report.

Triage, Open,
Resolved

Open The ticket is prioritised and well summarised, but work is not yet underway. In Progress

In
Progress

The assignee is 'actively' working on this ticket Patch Available,
Open

Patch
Available

The assignee has a patch that is ready for a reviewer. The assignee should endeavour to solicit from the
community a reviewer competent in the subsystem(s) from, if none is already assigned.

Review in Progress

Review in
Progress

The assigned reviewer is 'actively' reviewing the available patch Change Requested,
Ready to Commit

Change
Requested

The reviewer has provided feedback for the assignee to consider and incorporate into their patch. Once they are
ready to address these points, they should transition the ticket back to 'In Progress'

In Progress

Ready to
Commit

The reviewer(s) consider this patch to be ready to commit Resolved

Resolved The ticket has been closed (either successfully or unsuccessfully)

The column on the right represents the states we will provide buttons for performing a simple transition between. It does not include all acceptable
transitions.

Required fields on transition to 'Open'

Component
Feature
Priority
Complexity
Bug/Change Category
Severity (if bug)
Discovered By (if bug)

Required fields on transition to 'Patch Available'

Impacts
Platform
Test and Documentation Plan

Required fields on transition to 'Review in Progress'

Reviewers

Required fields on transition from 'Ready to Commit' to 'Resolved'

Since Version (if bug)
Fix Versions

Field Display Order

Project
Issue Type
Summary
Bug/Change Category
Discovered By
Component
Priority
Complexity
Impacts
Description
Since Version
Assignee
Reviewers
Test and Documentation Plan
Tester
Reporter

	JIRA Workflow Proposals

