
Artifact-Coordinate Expression Transformation
Expression Transformation in Artifact Coordinate Values within the POM

Relevant JIRA Issues

Main

MNG-4167
MNG-4140
MNG-3057

Similar

MNG-2971
MNG-2446
MNG-2412

Use cases and correct behavior

coordinate expression use cases

jar packaging

The main concern here is the way transitive dependencies will be resolved. dependency POMs will be interpolated during the consumer's build, which 
could result in invalid artifact references, or at least changed references from how the jar dependency was built.

NOTE: This is a similar scenario to artifacts that don't specify their version in a locked-down range...i.e. they are suggestions, not absolute requirements.

POM packaging / parent POM dependencies

The main concern here is maintaining dynamic artifact coordinates in dependencyManagement, plugins, etc. so that property references can be overridden 
by child POMs. For example:

specifying <mavenVersion> property for a suite of maven-related deps in dependencyManagement, which specify: <version>${mavenVersion}<
/version>
the parent POM may supply a basic default of: <mavenVersion>2.0.9</mavenVersion>
If a child POM overrides with: <mavenVersion>2.1.0</mavenVersion>, it should be able to make use of all the maven artifacts specified in the 
dependencyManagement of the parent with the newly-overridden version.

The pom packaging also shares the same concerns as jar packaging WRT transitive dependencies

envar and other user-specific expressions

These will evaluate to the local value. For instance:

os.name
java.version
user.dir
user.home
etc.

If a POM uses these in expressions for artifact coordinates, it may result in artifact references that only resolve on certain environments. For example, if 
built using JDK 1.6 and no corresponding artifact with '1.6' in its coordinate exists, but one does for '1.5' and '1.4', then the build will fail on that 1.6 
environment.

properties in profiles

These may change the artifact coordinate(s) according to which profile is active, or whether the default properties (in the POM main section) are used

When loading POMs from the repository:

settings profiles are NOT activated here
profiles.xml profiles are NOT activated here
profiles specified in -P cli options are NOT activated here
only those that trigger based on the following criteria will be activated:

system properties
cli-specified properties
other non-property activators

http://jira.codehaus.org/browse/MNG-4167
http://jira.codehaus.org/browse/MNG-4140
http://jira.codehaus.org/browse/MNG-3057
http://jira.codehaus.org/browse/MNG-2971
http://jira.codehaus.org/browse/MNG-2446
http://jira.codehaus.org/browse/MNG-2412


plugin requirements for POM information

release plugin

invoked directly from cli, outside of any lifecycle
invokes different lifecycle builds on the project, but currently uses separate java processes to do so

MUST modify the original pom.xml file as it exists on disk, WITHOUT ANY OTHER MANIPULATIONS
must NOT have new files added that are then referenced from project.file

this means that transforming the original POM file and writing it to a new location, which is then set on project.file, WILL NOT WORK

enforcer plugin

normally bound to the lifecycle
MAY require access to unaltered, original POM in order to execute rules

gpg plugin

normally bound to the lifecycle
requires access to the POM file that will eventually be installed or deployed. This file MUST NOT be changed after GPG runs.

shade plugin

normally bound to the lifecycle
requires access to project.originalModel, which MUST reflect the information in the POM file that will be installed or deployed.

this is necessary for the shade plugin to be able to generate a dependency-reduced POM.

Implementation strategies

2.0.10

Expressions in artifact coordinates are ignored. Users have plenty of rope with which to hang themselves

2.1.0

This was the first attempt to clean up the coordinate values in POMs before installing/deploying. Obviously, we didn't really understand the scope of the 
problem at this point.

attempted to resolve artifact versions to concrete terms during install/deploy process
implemented as an ArtifactTransformation, just like snapshot handling.

incidentally, snapshot handling violates the requirements for the shade plugin AND the gpg plugin.

Problems:

also modifies plugin configurations where the element '<version>' is used
fails to account for activated profiles that may supply/change interpolation values
only accounts for artifact versions, not artifactId, groupId, classifier, or type
modifies the POM after it has been signed by GPG, making the signature worthless
modifies the POM without reflecting the new information in the originalModel for the shade plugin to use

transformation happens too late for shade plugin anyway, though

This breaks legitimate use cases for expressions in artifact coordinates, like those detailed in the 'pom' and 'jar' packaging scenarios, above

2.2.0-current

In the latest attempt to resolve artifact coordinate expressions, the solution from 2.1.0 has been:

generalized to look at all artifact fields (groupId, artifactId, version, classifier, type)
moved into DefaultMavenProjectBuilder, to be run just before a project is returned to the build process

this makes the transformed artifact coordinate information available in POM-file form to all plugins in the build process, such as GPG
it also means that the POM transformation happens AT ALL TIMES

Problems:

release plugin tries to add the transformed version of the POM as a new file to SCM, since that's the POM file referenced from the project instance
shade plugin still cannot gain access to transformed information, since it's not reflected in project.originalModel

since the transformed information isn't original, this may not be appropriate anyway, though...

This breaks legitimate use cases for expressions in artifact coordinates, like those detailed in the 'pom' and 'jar' packaging scenarios, above

2.2.0-final



For this release, we're probably going to have to reverse course and remove all POM transformation code. We need a more comprehensive design review, 
and much more planning on how to introduce this sort of feature without breaking the use cases above

legitimate/safe coordinate expressions should be supported
any transformation must be reflected in all locations that plugins look for the information

either that, or the plugins must migrate to any new api we put in place to support coordinate transformation


	Artifact-Coordinate Expression Transformation

