
Simple

Simple Expression Language

The Simple Expression Language was a really simple language when it was created, but has since grown more powerful. It is primarily intended for being
a really small and simple language for evaluating s and s without requiring any new dependencies or knowledge of ; so it is Expression Predicate XPath
ideal for testing in . The idea was to cover 95% of the common use cases when you need a little bit of expression based script in your Camel camel-core
routes.

However for much more complex use cases you are generally recommended to choose a more expressive and powerful language such as:

SpEL
Mvel
Groovy
JavaScript
EL
OGNL
one of the supported Scripting Languages

The simple language uses placeholders for complex expressions where the expression contains constant literals.}${body

Deprecated: The placeholders can be omitted if the expression starts with the token, or if the token is only itself.${}

Alternative syntax
From Camel 2.5 you can also use the alternative syntax which uses as placeholders. This can be used in situations to avoid clashes when $simple{}
using for example Spring property placeholder together with Camel.
Configuring result type
From Camel 2.8 you can configure the result type of the expression. For example to set the type as a or a Simple java.lang.Boolean java.lang.

 etc.Integer
File language is now merged with Simple language
From Camel 2.2, the is now merged with language which means you can use all the file syntax directly within the simple language.File Language Simple
Simple Language Changes in Camel 2.9 onwards
The language have been improved from Camel 2.9 to use a better syntax parser, which can do index precise error messages, so you know exactly Simple
what is wrong and where the problem is. For example if you have made a typo in one of the operators, then previously the parser would not be able to
detect this, and cause the evaluation to be true. There are a few changes in the syntax which are no longer backwards compatible. When using Simple
language as a then the literal text be enclosed in either single or double quotes. For example: . Notice how we Predicate must " "${body} == 'Camel'
have single quotes around the literal. The old style of using and to refer to the message body and header is , and " "body " "header.foo @deprecated
it is encouraged to always use tokens for the built-in functions.${}
The range operator now requires the range to be in single quote as well as shown: ." "${header.zip} between '30000..39999'

To get the body of the in message: , or or .body in.body ${body}

A complex expression must use placeholders, such as: .${} Hello ${in.header.name} how are you?

You can have multiple functions in the same expression: . However you can " "Hello ${in.header.name} this is ${in.header.me} speaking
 nest functions in Camel 2.8.x or older e.g., having another placeholder in an existing, is not allowed. From you can nest functions.not ${} Camel 2.9

Variables
confluenceTableSmall

Variable Type Description

camelId String Camel 2.10: the name.CamelContext

camelContext.O
GNL

Object Camel 2.11: the invoked using a Camel OGNL expression.CamelContext

collate()group List Camel 2.17: The collate function iterates the message body and groups the data into sub lists of specified size. This can be used
with the EIP to split a message body and group/batch the split sub messages into a group of sub lists. This method works Splitter N
similar to the collate method in Groovy.

exchange Exchan
ge

Camel 2.16: the Exchange.

exchange.OGNL Object Camel 2.16: the Exchange invoked using a Camel OGNL expression.

exchangeId String Camel 2.3: the exchange Id.

id String The input message Id.

body Object The input body.

in.body Object The input body.

body.OGNL Object Camel 2.3: the input body invoked using a Camel OGNL expression.

in.body.OGNL Object Camel 2.3: the input body invoked using a Camel OGNL expression.

bodyAs()type Type Camel 2.3: Converts the body to the given type determined by its classname. The converted body can be .null

https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/SpEL
https://cwiki.apache.org/confluence/display/CAMEL/Mvel
https://cwiki.apache.org/confluence/display/CAMEL/Groovy
https://cwiki.apache.org/confluence/display/CAMEL/JavaScript
https://cwiki.apache.org/confluence/display/CAMEL/EL
https://cwiki.apache.org/confluence/display/CAMEL/OGNL
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
https://cwiki.apache.org/confluence/display/CAMEL/File+Language
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

bodyAs().type O
GNL

Object Camel 2.18: Converts the body to the given type determined by its classname and then invoke methods using a Camel OGNL
expression. The converted body can be .null

mandatoryBodyA
s()type

Type Camel 2.5: Converts the body to the given type determined by its classname, and expects the body to be not .null

mandatoryBodyA
s().type OGNL

Object Camel 2.18: Converts the body to the given type determined by its classname and then invoke methods using a Camel OGNL
expression.

out.body Object The output body.

header.foo Object Refer to the input header.foo

header[]foo Object Camel 2.9.2: refer to the input header.foo

headers.foo Object Refer to the input header.foo

headers[]foo Object Camel 2.9.2: refer to the input header.foo

in.header.foo Object Refer to the input header.foo

in.header[]foo Object Camel 2.9.2: refer to the input header.foo

in.headers.foo Object Refer to the input header.foo

in.headers[]foo Object Camel 2.9.2: refer to the input header.foo

header.foo[]bar Object Camel 2.3: regard input header as a map and perform lookup on the map with as key.foo bar

in.header.foo[
]bar

Object Camel 2.3: regard input header as a map and perform lookup on the map with as key.foo bar

in.headers.foo
[]bar

Object Camel 2.3: regard input header as a map and perform lookup on the map with as key.foo bar

header. .foo
OGNL

Object Camel 2.3: refer to the input header and invoke its value using a Camel OGNL expression.foo

in.header. .foo
OGNL

Object Camel 2.3: refer to the input header and invoke its value using a Camel OGNL expression.foo

in.headers.foo
.OGNL

Object Camel 2.3: refer to the input header and invoke its value using a Camel OGNL expression.foo

out.header.foo Object Refer to the out header .foo

out.header[]foo Object Camel 2.9.2: refer to the out header .foo

out.headers.foo Object Refer to the out header .foo

out.headers[foo
]

Object Camel 2.9.2: refer to the out header .foo

headerAs(,key t
)ype

Type Camel 2.5: Converts the header to the given type determined by its classname.

headers Map Camel 2.9: refer to the input headers.

in.headers Map Camel 2.9: refer to the input headers.

property.foo Object :Deprecated refer to the property on the exchange.foo

exchangeProper
ty.foo

Object refer to the property on the exchange.Camel 2.15: foo

property[]foo Object :Deprecated refer to the property on the exchange.foo

exchangeProper
ty[]foo

Object Camel 2.15: refer to the property on the exchange.foo

property. .foo
OGNL

Object :Deprecated refer to the property on the exchange and invoke its value using a Camel OGNL expression.foo

exchangeProper
ty. .OGNLfoo

Object Camel 2.15: refer to the property on the exchange and invoke its value using a Camel OGNL expression.foo

sys.foo String Refer to the system property .foo

sysenv.foo String Camel 2.3: refer to the system environment property .foo

exception Object Camel 2.4: Refer to the exception object on the exchange, is if no exception set on exchange. Will fallback and grab caught null
exceptions () if the Exchange has any.Exchange.EXCEPTION_CAUGHT

exception.OGNL Object Camel 2.4: Refer to the exchange exception invoked using a Camel OGNL expression object

exception.
message

String Refer to the exception.message on the exchange, is if no exception set on exchange. Will fallback and grab caught exceptions (null E
) if the Exchange has any.xchange.EXCEPTION_CAUGHT

exception.
stacktrace

String Camel 2.6. Refer to the on the exchange. Result is if no exception set on exchange. Will fallback exception.stracktrace null
and grab caught exceptions () if the Exchange has any.Exchange.EXCEPTION_CAUGHT

date: :command p
attern

String Date formatting using the patterns. Supported commands are: java.text.SimpleDateFormat

now for current timestamp.
in.header.xxx or to use the object in the header with the key .header.xxx Date IN xxx
out.header.xxx to use the object in the header with the key .Date OUT xxx

bean:bean
expression

Object Invoking a bean expression using the language. Specifying a method name you must use dot as separator. We also support Bean
the syntax that is used by the component.?method=methodname Bean

properties:loc
:keyations

String : (use properties-location instead) Camel 2.3:Deprecated Lookup a property with the given key. The option is locations
optional. See more at .Using PropertyPlaceholder

properties-
location:locat
ions:key

String Camel 2.14.1: Lookup a property with the given key. The option is optional. See more at .locations Using PropertyPlaceholder

properties:
key:default

String Camel 2.14.1: Lookup a property with the given key. If the key does not exists or has no value, then an optional default value can be
specified.

routeId String Camel 2.11: Returns the Id of the current route the is being routed.Exchange

threadName String Camel 2.3: Returns the name of the current thread. Can be used for logging purpose.

ref:xxx Object Camel 2.6: To lookup a bean from the with the given Id.Registry

type:name.
field

Object Camel 2.11: To refer to a type or field by its FQN name. To refer to a field you can append . For example you can .FIELD_NAME
refer to the constant field from Exchange as: org.apache.camel.Exchange.FILE_NAME

.

null null Camel 2.12.3: represents a .null

random()value Integer Camel 2.16.0: returns a random Integer between (included) and (excluded)0 value

random(,)min max Integer Camel 2.16.0: returns a random Integer between (included) and (excluded)min max

skip(number) Iterat
or

Camel 2.19: The skip function iterates the message body and skips the first number of items. This can be used with the Splitter EIP
to split a message body and skip the first N number of items.

messageHistory String Camel 2.17: The message history of the current exchange how it has been routed. This is similar to the route stack-trace message
history the error handler logs in case of an unhandled exception.

messageHistory
(false)

String Camel 2.17: As but without the exchange details (only includes the route strack-trace). This can be used if you messageHistory
do not want to log sensitive data from the message itself.

OGNL expression support

Available as of Camel 2.3

Camel's OGNL support is for invoking methods only. You cannot access fields.
From : we added special support for accessing the length field of Java arrays.Camel 2.11.1

The and language now supports a Camel OGNL notation for invoking beans in a chain like fashion. Suppose the Message body contains Simple Bean IN
a POJO which has a method.getAddress()

Then you can use Camel OGNL notation to access the address object:

javasimple("${body.address}") simple("${body.address.street}") simple("${body.address.zip}")

Camel understands the shorthand names for accessors, but you can invoke any method or use the real name such as:

javasimple("${body.address}") simple("${body.getAddress.getStreet}") simple("${body.address.getZip}") simple("${body.doSomething}")

You can also use the null safe operator () to avoid a NPE if for example the body does have an address?. not

javasimple("${body?.address?.street}")

It is also possible to index in or types, so you can do:Map List

javasimple("${body[foo].name}")

To assume the body is based and lookup the value with as key, and invoke the method on that value.Map foo getName

key with spaces
If the key has space, then you enclose the key with quotes, for example:must

javasimple("${body['foo bar'].name}")

You can access the or objects directly using their key name (with or without dots) :Map List

javasimple("${body[foo]}") simple("${body[this.is.foo]}")

Suppose there was no value with the key then you can use the null safe operator to avoid a NPE as shown:foo

javasimple("${body[foo]?.name}")

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Using+PropertyPlaceholder
https://cwiki.apache.org/confluence/display/CAMEL/Using+PropertyPlaceholder
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Splitter
https://cwiki.apache.org/confluence/display/CAMEL/Bean

You can also access types, for example to get lines from the address you can do:List

javasimple("${body.address.lines[0]}") simple("${body.address.lines[1]}") simple("${body.address.lines[2]}")

There is a special keyword which can be used to get the last value from a list.last

javasimple("${body.address.lines[last]}")

And to get the penultimate line use subtraction. In this case use for this:last-1

javasimple("${body.address.lines[last-1]}")

And the third last is of course:

javasimple("${body.address.lines[last-2]}")

And you can call the method on the list withsize

javasimple("${body.address.lines.size}")

From we added support for the length field for Java arrays as well. Example:Camel 2.11.1

javaString[] lines = new String[]{"foo", "bar", "cat"}; exchange.getIn().setBody(lines); simple("There are ${body.length} lines")

And yes you can combine this with the operator support as shown below:

javasimple("${body.address.zip} > 1000")

Operator Support

The parser is limited to only support a single operator. To enable it the left value must be enclosed in .${}

The syntax is:

java${leftValue} OP rightValue

Where the can be a literal enclosed in , , a constant value or another expression enclosed in .rightValue String ' ' null ${}

Important
There be spaces around the operator.must

Camel will automatically type convert the type to the type, so it is possible to for example, convert a string into a numeric so you rightValue leftValue
can use comparison for numeric values.>

The following operators are supported:

Operator Description

== Equals.

=~ Camel 2.16: equals ignore case (will ignore case when comparing values).String

> Greater than.

>= Greater than or equals.

< Less than.

<= Less than or equals.

!= Not equals.

contains For testing if contains in a string based value.

not contains For testing if not contains in a string based value.

regex For matching against a given regular expression pattern defined as a value.String

not regex For not matching against a given regular expression pattern defined as a value.String

in For matching if in a set of values, each element must be separated by comma.

If you want to include an empty value, then it must be defined using double comma, eg ',,bronze,silver,gold', which
is a set of four values with an empty value and then the three medals.

not in For matching if not in a set of values, each element must be separated by comma.

If you want to include an empty value, then it must be defined using double comma. Example: , which',,bronze,silver,gold'
is a set of four values with an empty value and then the three medals.

is For matching if the left hand side type is an the value.instanceof

not is For matching if the left hand side type is not an the value.instanceof

range For matching if the left hand side is within a range of values defined as numbers: .from..to

From : the range values must be enclosed in single quotes.Camel 2.9

not range For matching if the left hand side is not within a range of values defined as numbers: .from..to

From : the range values must be enclosed in single quotes.Camel 2.9

starts with Camel 2.17.1, 2.18: For testing if the left hand side string starts with the right hand string.

ends with Camel 2.17.1, 2.18: For testing if the left hand side string ends with the right hand string.

And the following unary operators can be used:

Operator Description

++ Camel 2.9: To increment a number by one. The left hand side must be a function, otherwise parsed as literal.

-- Camel 2.9: To decrement a number by one. The left hand side must be a function, otherwise parsed as literal.

\ Camel 2.9.3 to 2.10.x To escape a value, e.g., , to indicate a sign. Special: Use for new line, for tab, and for carriage return.\$ $ \n \t \r

Note: Escaping is supported using the not File Language.

Note: from Camel 2.11, . It has been replaced with the following three escape sequences.the escape character is no longer supported

\n Camel 2.11: To use newline character.

\t Camel 2.11: To use tab character.

\r Camel 2.11: To use carriage return character.

\} Camel 2.18: To use the character as text.}

And the following logical operators can be used to group expressions:

Operator Description

and Deprecated: use instead. The logical and operator is used to group two expressions.&&

or Deprecated: use instead. The logical or operator is used to group two expressions.||

&& Camel 2.9: The logical and operator is used to group two expressions.

|| Camel 2.9: The logical or operator is used to group two expressions.

Using and,or operators
In the or can only be used in a simple language expression.Camel 2.4 and older and or once

From : you can use these operators multiple times.Camel 2.5

The syntax for is:AND

java${leftValue} OP rightValue and ${leftValue} OP rightValue

And the syntax for is:OR

java${leftValue} OP rightValue or ${leftValue} OP rightValue

Some examples:

java// exact equals match simple("${in.header.foo} == 'foo'") // ignore case when comparing, so if the header has value FOO this will match simple("${in.
header.foo} =~ 'foo'") // here Camel will type convert '100' into the type of in.header.bar and if it is an Integer '100' will also be converter to an Integer simple
("${in.header.bar} == '100'") simple("${in.header.bar} == 100") // 100 will be converter to the type of in.header.bar so we can do > comparison simple("${in.
header.bar} > 100") Comparing with different types
When you compare with different types such as and , then you have to take a bit care. Camel will use the type from the left hand side as first String int
priority. And fallback to the right hand side type if both values couldn't be compared based on that type. This means you can flip the values to enforce a
specific type. Suppose the bar value above is a . Then you can flip the equation:String

https://cwiki.apache.org/confluence/display/CAMEL/File+Language

javasimple("100 < ${in.header.bar}")

which then ensures the type is used as first priority.int

This may change in the future if the Camel team improves the binary comparison operations to prefer numeric types over based. It's most often String
the type which causes problem when comparing with numbers.String
java// testing for null simple("${in.header.baz} == null") // testing for not null simple("${in.header.baz} != null")

And a bit more advanced example where the right value is another expression,

javasimple("${in.header.date} == ${date:now:yyyyMMdd}") simple("${in.header.type} == ${bean:orderService?method=getOrderType}")

And an example with contains, testing if the title contains the word Camel:

javasimple("${in.header.title} contains 'Camel'")

And an example with regex, testing if the number header is a four digit value:

javasimple("${in.header.number} regex '\\d{4}'")

And finally an example if the header equals any of the values in the list. Each element must be separated by comma, and no space around. This also
works for numbers etc, as Camel will convert each element into the type of the left hand side.

javasimple("${in.header.type} in 'gold,silver'")

And for all the last three we also support the negate test using :not

javasimple("${in.header.type} not in 'gold,silver'")

And you can test if the type is a certain instance, e.g., for instance a :String

javasimple("${in.header.type} is 'java.lang.String'")

We have added a shorthand for all types so you can write it as:java.lang

javasimple("${in.header.type} is 'String'")

Ranges are also supported. The range interval requires numbers and both from and end are inclusive. For instance to test whether a value is between 100
and :199

javasimple("${in.header.number} range 100..199")

Notice we use in the range without spaces. It is based on the same syntax as Groovy...

From : the range value must be in single quotes:Camel 2.9

javasimple("${in.header.number} range '100..199'") Can be used in Spring XML
As the Spring XML does not have all the power as the Java DSL with all its various builder methods, you have to resort to use some other languages for
testing with simple operators. Now you can do this with the simple language. In the sample below we want to test if the header is a widget order:

xml<from uri="seda:orders"> <filter> <simple>${in.header.type} == 'widget'</simple> <to uri="bean:orderService?method=handleWidget"/> </filter> <
/from>

Using / and or

If you have two expressions you can combine them with the or operator.and or

Camel 2.9 onwards
Use or && ||

For instance:

javasimple("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold'")

And of course the is also supported. The sample would be:or

javasimple("${in.header.title} contains 'Camel' or ${in.header.type'} == 'gold'")

Note: currently or can only be used in a simple language expression. This might change in the future. So you do:and or once cannot

javasimple("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold' and ${in.header.number} range 100..200")

Samples

In the Spring XML sample below we filter based on a header value:

xml<from uri="seda:orders"> <filter> <simple>${in.header.foo}</simple> <to uri="mock:fooOrders"/> </filter> </from>

The Simple language can be used for the predicate test above in the pattern, where we test if the in message has a header (a header Message Filter foo
with the key exists). If the expression evaluates to then the message is routed to the endpoint, otherwise it is lost in the deep foo true mock:fooOrders
blue sea .

The same example in Java DSL:

javafrom("seda:orders") .filter().simple("${in.header.foo}") .to("seda:fooOrders");

You can also use the simple language for simple text concatenations such as:

javafrom("direct:hello") .transform().simple("Hello ${in.header.user} how are you?") .to("mock:reply");

Notice that we must use placeholders in the expression now to allow Camel to parse it correctly.${}

And this sample uses the date command to output current date.

javafrom("direct:hello") .transform().simple("The today is ${date:now:yyyyMMdd} and it is a great day.") .to("mock:reply");

And in the sample below we invoke the bean language to invoke a method on a bean to be included in the returned string:

javafrom("direct:order") .transform().simple("OrderId: ${bean:orderIdGenerator}") .to("mock:reply");

Where is the id of the bean registered in the . If using Spring then it is the Spring bean id.orderIdGenerator Registry

If we want to declare which method to invoke on the order id generator bean we must prepend such as below where we invoke the .method name gener
 method.ateId

javafrom("direct:order") .transform().simple("OrderId: ${bean:orderIdGenerator.generateId}") .to("mock:reply");

We can use the option that we are familiar with the component itself:?method=methodname Bean

javafrom("direct:order") .transform().simple("OrderId: ${bean:orderIdGenerator?method=generateId}") .to("mock:reply");

From : you can also convert the body to a given type, for example to ensure that it is a you can do:Camel 2.3 String

xml<transform> <simple>Hello ${bodyAs(String)} how are you?</simple> </transform>

There are a few types which have a shorthand notation, so we can use instead of . These are: , , String java.lang.String byte[] , String Integer
. All other types must use their FQN name, e.g. .Long org.w3c.dom.Document

It is also possible to lookup a value from a header in :Map Camel 2.3

xml<transform> <simple>The gold value is ${header.type[gold]}</simple> </transform>

In the code above we lookup the header with name and regard it as a and we then lookup with the key and return the value. type java.util.Map gold
If the header is not convertible to Map an exception is thrown. If the header with name does not exist is returned.type null

From : you can nest functions, such as shown below:Camel 2.9

xml<setHeader headerName="myHeader"> <simple>${properties:${header.someKey}}</simple> </setHeader>

Referring to Constants or Enums

Available Camel 2.11from

Suppose you have an enum for customers: A{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/Customer.java}
nd in a we can use the language to refer to this enum, to check the message which enum it matches.Content Based Router Simple {snippet:
id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/processor/CBRSimpleTypeTest.java}

Using New Lines or Tabs in XML DSLs

Available Camel 2.9.3from

From : it is easier to specify new lines or tabs in XML DSLs as you can escape the value nowCamel 2.9.3

xml<transform> <simple>The following text\nis on a new line</simple> </transform>

Leading and Trailing Whitespace Handling

Available Camel 2.10.0from

From : the attribute of the expression can be used to control whether the leading and trailing whitespace characters are removed or Camel 2.10.0 trim
preserved. The default of removes all whitespace characters.trim=true

xml<setBody> <simple trim="false">You get some trailing whitespace characters. </simple> </setBody>

Setting the Result Type

https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router

Available from Camel 2.8

You can now provide a result type to the expression, which means the result of the evaluation will be converted to the desired type. This is most Simple
usable to define types such as 's, 's, etc.boolean integer

For example to set a header as a type you can do:boolean

.setHeader("cool", simple("true", Boolean.class))

And in XML DSL

xml<setHeader headerName="cool"> <!-- use resultType to indicate that the type should be a java.lang.Boolean --> <simple resultType="java.lang.
Boolean">true</simple> </setHeader>

Changing Function Start and End Tokens

Available Camel 2.9.1from

You can configure the function start and end tokens - using the setters and on ${} changeFunctionStartToken changeFunctionEndToken Simple
, using Java code. From Spring XML you can define a tag with the new changed tokens in the properties as shown below:Language <bean>

xml<!-- configure Simple to use custom prefix/suffix tokens --> <bean id="simple" class="org.apache.camel.language.simple.SimpleLanguage"> <property
name="functionStartToken" value="["/> <property name="functionEndToken" value="]"/> </bean>

In the example above we use as the changed tokens. Notice by changing the start/end token you change those in all the Camel applications which []
share the same on their classpath. For example in an OSGi server this may affect many applications, where as a Web Application as a WAR camel-core
file it only affects the Web Application.

Loading Script from External Resource

Available Camel 2.11from

You can externalize the script and have Camel load it from a resource such as: , , or . This is done using the following syntax: classpath: file: http: r
, e.g., to refer to a file on the classpath you can do:esource:scheme:location

java.setHeader("myHeader").simple("resource:classpath:mysimple.txt")

Setting Spring beans to Exchange properties

Available Camel 2.6from

You can set a spring bean into an exchange property as shown below:

xml<bean id="myBeanId" class="my.package.MyCustomClass"/> <route> <!-- ... --> <setProperty propertyName="monitoring.message"> <simple>ref:
myBeanId</simple> </setProperty> <!-- ... --> </route>

Dependencies

The language is part of .Simple camel-core

	Simple

