
Camel JMX

Camel JMX

Apache Camel has extensive support for JMX to allow you to monitor and control the Camel managed objects with a JMX client. Camel also provides a JMX
component that allows you to subscribe to MBean notifications. This page is about how to manage and monitor Camel using JMX.

Activating JMX in Camel

Spring JAR Dependencies Required By Camel 2.8 or Older

The following Spring jar files must be on the classpath in order for Camel to be able to use JMX instrumentation:

spring-context.jar
spring-aop.jar
spring-beans.jar
spring-core.jar

If these jar files are not on the classpath Camel will fallback to non JMX mode. Camel will log a warning to this affect using the logger: org.apache.
.camel.impl.DefaultCamelContext

From Camel 2.9: the Spring jar files are longer required for Camel to run in JMX mode.no

Using JMX to manage Apache Camel

By default, JMX instrumentation agent is in Camel, which means that Camel runtime creates and registers MBean management objects with a enabled MBe
 instance in the VM. This allows Camel users to instantly obtain insights into how Camel routes perform down to the individual processor level.anServer

The supported types of management objects are , , , and . Some of these management objects also expose lifecycle endpoint route service processor
operations in addition to performance counter attributes.

The is the default naming strategy which builds object names used for MBean registration. By default DefaultManagementNamingStrategy org.apache.
 is the domain name for all object names created by . The domain name of the MBean object can be configured by Java camel CamelNamingStrategy

VM system property:

-Dorg.apache.camel.jmx.mbeanObjectDomainName=your.domain.name

Or, by adding a element inside the element in Spring configuration:jmxAgent camelContext

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" mbeanObjectDomainName="your.domain.name"/> ... <
/camelContext>

Spring configuration always takes precedence over system properties when they both present. It is true for all JMX related configurations.

Disabling JMX instrumentation agent in Camel

You can disable JMX instrumentation agent by setting the Java VM system property as follow. The property value is treated as .boolean

-Dorg.apache.camel.jmx.disabled=true

Or, by adding a element inside the element in Spring configuration:jmxAgent camelContext

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" disabled="true"/> ... </camelContext>

Or in its a bit easier (not having to use JVM system property) if using pure Java as you can disable it as follows:Camel 2.1

CamelContext camel = new DefaultCamelContext(); camel.disableJMX();

Locating a MBeanServer in the Java VM

Each CamelContext can have an instance of wrapped inside the . The InstrumentationAgent is the InstrumentationAgent InstrumentationLifecycleStrategy
object that interfaces with a to register/unregister Camel MBeans. Multiple CamelContexts/InstrumentationAgents can/should share a MBeanServer MBean

. By default, Camel runtime picks the first returned by that matches the default Server MBeanServer MBeanServerFactory.findMBeanServer method
domain name of . You may want to change the default domain name to match the instance that you are already using org.apache.camel MBeanServer
in your application. Especially, if your is attached to a JMX connector server, you will not need to create a connector server in Camel.MBeanServer

You can configure the matching default domain name via system property.

-Dorg.apache.camel.jmx.mbeanServerDefaultDomain=<your.domain.name>

Or, by adding a element inside the element in Spring configuration:jmxAgent camelContext

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" mbeanServerDefaultDomain="your.domain.name"/> ...
</camelContext>

https://cwiki.apache.org/confluence/display/CAMEL/JMX
https://cwiki.apache.org/confluence/display/CAMEL/JMX
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/mbean/ManagedEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/mbean/ManagedRoute.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/mbean/ManagedService.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/mbean/ManagedProcessor.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/DefaultManagementNamingStrategy.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/InstrumentationAgent.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/InstrumentationLifecycleStrategy.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerFactory.html#findMBeanServer(java.lang.String)

If no matching can be found, a new one is created and the new 's default domain name is set according to the default and MBeanServer MBeanServer
configuration as mentioned above.

It is also possible to use the when it is desirable to manage JVM MBeans by setting the system property. The default PlatformMBeanServer MBeanServer
domain name configuration is ignored as it is not applicable.

From Camel 1.5: the default value of is . Set the property to to disable using platform usePlatformMBeanServer true false .MBeanServer

-Dorg.apache.camel.jmx.usePlatformMBeanServer=True

Or, by adding a element inside the element in Spring configuration:jmxAgent camelContext

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" usePlatformMBeanServer="true"/> ... </camelContext>

Creating JMX RMI Connector Server

JMX connector server enables MBeans to be remotely managed by a JMX client such as JConsole; Camel JMX RMI connector server can be optionally
turned on by setting system property and the used by Camel is attached to that connector server.MBeanServer

-Dorg.apache.camel.jmx.createRmiConnector=True

Or, by adding a element inside the element in Spring configuration:jmxAgent camelContext

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" createConnector="true"/> ... </camelContext>

JMX Service URL

The default JMX Service URL has the format:

service:jmx:rmi:///jndi/rmi://localhost:<registryPort>/<serviceUrlPath>

where is the RMI registry port and the default value is .registryPort 1099

You can set the RMI registry port by system property.

-Dorg.apache.camel.jmx.rmiConnector.registryPort=<port number>

Or, by adding a element inside the element in Spring configuration:jmxAgent camelContext

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" createConnector="true" registryPort="port number"/> ...
</camelContext>

where is the path name in the URL and the default value is .serviceUrlPath /jmxrmi/camel

You can set the service URL path by system property.

-Dorg.apache.camel.jmx.serviceUrlPath=<path> Setting ManagementAgent settings in Java
From Camel 2.4: various options can also be set on the :ManagementAgent {snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache
/camel/management/ManagedServiceUrlPathTest.java}

Or, by adding a element inside the element in Spring configuration:jmxAgent camelContext

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" createConnector="true" serviceUrlPath="path"/> ... <
/camelContext>

By default, RMI server object listens on a dynamically generated port, which can be a problem for connections established through a firewall. In such
situations, RMI connection port can be explicitly set by the system property.

-Dorg.apache.camel.jmx.rmiConnector.connectorPort=<port number>

Or by adding a element inside the element in Spring configuration:jmxAgent camelContext

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring"> <jmxAgent id="agent" createConnector="true" connectorPort="port
number"/> ... </camelContext>

When the connector port option is set, the JMX service URL will become:

service:jmx:rmi://localhost:<connectorPort>/jndi/rmi://localhost:<registryPort>/<serviceUrlPath>

System Properties for Camel JMX Support

Property Name value Description

org.apache.camel.jmx true/false When JMX in enabled in Camel.true

See more system properties in this section below: jmxAgent Properties Reference

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/management/ManagementFactory.html#getPlatformMBeanServer()

How to use authentication with JMX

JMX in the JDK have features for authentication and also for using secure connections over SSL. You have to refer to the SUN documentation how to use
this:

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html

JMX inside an Application Server

Tomcat 6

See for details about enabling JMX in Tomcat.this page

In short, modify your (or in Windows) file to set the following options...catalina.sh catalina.bat

set CATALINA_OPTS=-Dcom.sun.management.jmxremote \ -Dcom.sun.management.jmxremote.port=1099 \ -Dcom.sun.management.jmxremote.
ssl=false \ -Dcom.sun.management.jmxremote.authenticate=false

JBoss AS 4

By default JBoss creates its own . To allow Camel to expose to the same server follow these steps:MBeanServer

Tell Camel to use the Platform (This defaults to true in Camel 1.5)MBeanServer

<camel:camelContext id="camelContext"> <camel:jmxAgent id="jmxAgent" mbeanObjectDomainName="org.yourname" usePlatformMBeanServer="true"
/> </camel:camelContext>

Alter your JBoss instance to use the Platform .MBeanServer
Add the following property to your by editing or . See JAVA_OPTS run.sh run.conf -Djboss.platform.mbeanserver http://wiki.jboss.org
/wiki/JBossMBeansInJConsole

WebSphere

Alter the to be mbeanServerDefaultDomain WebSphere

<camel:jmxAgent id="agent" createConnector="true" mbeanObjectDomainName="org.yourname" usePlatformMBeanServer="false"
mbeanServerDefaultDomain="WebSphere"/>

Oracle OC4j

The Oracle OC4J J2EE application server will not allow Camel to access the platform . You can identify this in the log as Camel will log a MBeanServer WA
.RN

xxx xx, xxxx xx:xx:xx xx org.apache.camel.management.InstrumentationLifecycleStrategy onContextStart WARNING: Could not register CamelContext
MBean java.lang.SecurityException: Unauthorized access from application: xx to MBean: java.lang:type=ClassLoading at oracle.oc4j.admin.jmx.shared.
UserMBeanServer.checkRegisterAccess(UserMBeanServer.java:873)

To resolve this you should disable the JMX agent in Camel, see section Disabling JMX instrumentation agent in Camel

Advanced JMX Configuration

The Spring configuration file allows you to configure how Camel is exposed to JMX for management. In some cases, you could specify more information
here, like the connector's port or the path name.

Example:
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" createConnector="true" registryPort="2000"
mbeanServerDefaultDomain="org.apache.camel.test"/> <route> <from uri="seda:start"/> <to uri="mock:result"/> </route> </camelContext>

If you wish to change the Java 5 JMX settings you can use various JMX system properties

For example you can enable remote JMX connections to the Sun JMX connector, via setting the following environment variable (using or set export
depending on your platform). These settings only configure the Sun JMX connector within Java 1.5+, not the JMX connector that Camel creates by default.

SUNJMX=-Dcom.sun.management.jmxremote=true -Dcom.sun.management.jmxremote.port=1616 \ -Dcom.sun.management.jmxremote.
authenticate=false -Dcom.sun.management.jmxremote.ssl=false

(The environment variable is simple used by the startup script for Camel, as additional startup parameters for the JVM. If you start Camel directly, SUNJMX
you'll have to pass these parameters yourself.)

jmxAgent Properties Reference

Spring property System property Default
Value

Description

id The JMX agent name, and it is not optional.

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html
http://tomcat.apache.org/tomcat-6.0-doc/monitoring.html
http://wiki.jboss.org/wiki/JBossMBeansInJConsole
http://wiki.jboss.org/wiki/JBossMBeansInJConsole
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#properties

usePlatformMBea
nServer

org.apache.camel.jmx.
usePlatformMBeanServer

false, - true
Release 1.5 or
later

If , it will use the from the JVM.true MBeanServer

mbeanServerDefa
ultDomain

org.apache.camel.jmx.
mbeanServerDefaultDomain

org.apache.
camel

The default JMX domain of the .MBeanServer

mbeanObjectDoma
inName

org.apache.camel.jmx.
mbeanObjectDomainName

org.apache.
camel

The JMX domain that all object names will use.

createConnector org.apache.camel.jmx.
createRmiConnect

false If we should create a JMX connector (to allow remote management) for the MBeanServer
.

registryPort org.apache.camel.jmx.
rmiConnector.registryPort

1099 The port that the JMX RMI registry will use.

connectorPort org.apache.camel.jmx.
rmiConnector.connectorPort

-1 (dynamic) The port that the JMX RMI server will use.

serviceUrlPath org.apache.camel.jmx.
serviceUrlPath

/jmxrmi
/camel

The path that JMX connector will be registered under.

onlyRegisterPro
cessorWithCusto
mId

org.apache.camel.jmx.
onlyRegisterProcessorWithC
ustomId

false Camel 2.0: If this option is enabled then only processors with a custom id set will be
registered. This allows you to filer out unwanted processors in the JMX console.

statisticsLevel All /
Default

Camel 2.1: Configures the level for whether performance statistics is enabled for the
MBean. See section for more Configuring level of granularity for performance statistics
details.

From Camel 2.16: the option is renamed to , and a new option All Default Extended
has been introduced which allows gathered additional run time JMX metrics.

includeHostName org.apache.camel.jmx.
includeHostName

 Camel 2.13: Whether to include the hostname in the MBean naming. : From Camel 2.13
the default is . Previously the default was .false true

You can use this option to restore old behavior if really needed.

useHostIPAddress org.apache.camel.jmx.
useHostIPAddress

false Camel 2.16: Whether to use hostname or IP Address in the service url when creating
the remote connector. By default the hostname will be used.

loadStatisticsE
nabled

org.apache.camel.jmx.
loadStatisticsEnabled

false Camel 2.16:Whether load statistics is enabled (gathers load statistics using a
background thread per CamelContext).

endpointRuntime
StatisticsEnabl
ed

org.apache.camel.jmx.
endpointRuntimeStatisticsE
nabled

true Camel 2.16: Whether endpoint runtime statistics is enabled (gathers runtime usage of
each incoming and outgoing endpoints).

Configuring Whether to Register MBeans always, For New Routes or Just by Default

Available as of Camel 2.7

Camel now offers 2 settings to control whether or not to register mbeans

Option Default Description

registerAlways false If enabled then MBeans is always registered.

registerNewRoutes true If enabled then adding new routes after has been started will also register MBeans from that given CamelContext
route.

By default Camel registers MBeans for all the routes configured when its starting. The option control if MBeans should also be registerNewRoutes
registered if you add new routes thereafter. You can disable this, if you for example add and remove temporary routes where management is not needed.

Be a bit caution to use the option when using dynamic patterns such as the having unique endpoints. If so then each registerAlways EIP Recipient List
unique endpoint and its associated services/producers would also be registered. This could potential lead to degradation in system performance due the
rising number of mbeans in the registry. A MBean is not a light-weight object and thus consumes memory.

Monitoring Camel using JMX

Using JConsole to monitor Camel

The should appear in the list of local connections, if you are running JConsole on the same host as Camel. To connect to a remote CamelContext
Camel instance, or if the local process does not show up, use Remote Process option, and enter an URL.

Here is an example localhost URL: service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/camel

Using the Apache Camel with JConsole

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/EIP
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List

Which endpoints are registered

In onward endpoints are registered as the overhead for non singleton will be substantial in cases where thousands or millions Camel 2.1 only singleton
of endpoints are used. This can happens when using a EIP or from a that sends a lot of messages.Recipient List ProducerTemplate

Which processors are registered

See .this FAQ

How to use the JMX NotificationListener to listen the camel events?

The Camel notification events give a coarse grained overview what is happening. You can see lifecycle event from context and endpoints and you can see
exchanges being received by and sent to endpoints. From you can use a custom JMX NotificationListener to listen the camel events.Camel 2.4

First you need to set up a before you start the CamelContext.JmxNotificationEventNotifier {snippet:id=e1|lang=java|url=camel/trunk/camel-core
Second you can register your listener for listening the event/src/test/java/org/apache/camel/management/JmxNotificationEventNotifierTest.java} {snippet:

id=e2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/management/JmxNotificationEventNotifierTest.java}

Using the Tracer MBean to get fine grained tracing

Additionally to the coarse grained notifications above support JMX Notification for fine grained trace events. These can be found in the Tracer Camel 2.9.0
MBean. To activate fine grained tracing you first need to activate tracing on the context or on a route. This can either be done when configuring the context
or on the context / route MBeans.

As a second step you have to set the attribute to on the tracer. This can again be done when configuring the context or jmxTraceNotifications true
at run time on the tracer MBean.

Now you can register for Notifications on the Tracer MBean using JConsole. There will be one Notification for every step on the route with all TraceEvent
exchange and message details.

https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
https://cwiki.apache.org/confluence/display/CAMEL/Why+is+my+processor+not+showing+up+in+JConsole

Using JMX for your own Camel Code

Registering your own Managed Endpoints

Available as of Camel 2.0
You can decorate your own endpoints with Spring managed annotations to allow to register them in the Camel and @ManagedResource MBeanServer
thus access your custom MBeans using JMX.

 in we have changed this to apply other than just endpoints but then you need to implement the interface Notice: Camel 2.1 org.apache.camel.spi.
 as well. More about this later.ManagementAware

For example we have the following custom endpoint where we define some options to be managed:{snippet:id=e1|lang=java|url=camel/trunk/camel-core
 it's encouraged that you use the , /src/test/java/org/apache/camel/management/CustomEndpoint.java}From Camel 2.9: @ManagedResource @ManagedAt

, and attributes from the package. This allows your custom code to not depend tribute @ManagedOperation org.apache.camel.api.management
on Spring JARs.

Programming your own Managed Services

Available as of Camel 2.1

Camel now offers to use your own MBeans when registering services for management. What that means is for example you can develop a custom Camel
component and have it expose MBeans for endpoints, consumers and producers etc. All you need to do is to implement the interface org.apache.

 and return the managed object Camel should use.camel.spi.ManagementAware

Now before you think oh boys the JMX API is really painful and terrible, then yeah you are right. Lucky for us Spring though too and they created a range
of annotations you can use to export management on an existing bean. That means that you often use that and just return in the this getManagedObject
from the interface. For an example see the code example above with the .ManagementAware CustomEndpoint

Now in you can do this for all the objects that Camel registers for management which are quite a bunch, but not all.Camel 2.1

For services which do not implement this interface then Camel will fallback to using default wrappers as defined in the table below:ManagementAware

Type MBean wrapper

CamelContext ManagedCamelContext

Component ManagedComponent

Endpoint ManagedEndpoint

Consumer ManagedConsumer

Producer ManagedProducer

Route ManagedRoute

Processor ManagedProcessor

Tracer ManagedTracer

Service ManagedService

In addition to that there are some extended wrappers for specialized types such as

Type MBean wrapper

ScheduledPollConsumer ManagedScheduledPollConsumer

BrowsableEndpoint ManagedBrowseableEndpoint

Throttler ManagedThrottler

Delayer ManagedDelayer

SendProcessor ManagedSendProcessor

And in the future we will add additional wrappers for more EIP patterns.

ManagementNamingStrategy

Available as of Camel 2.1

Camel provides a pluggable API for naming strategy by . A default implementation is used to org.apache.camel.spi.ManagementNamingStrategy
compute the MBean names that all MBeans are registered with.

Management naming pattern

Available as of Camel 2.10

From : we made it easier to configure a naming pattern for the MBeans. The pattern is used as part of the as they key after the Camel 2.10 ObjectName
domain name. By default Camel will use MBean names for the as follows:ManagedCamelContextMBean

org.apache.camel:context=localhost/camel-1,type=context,name=camel-1

From Camel 2.13: the is not included in the MBean names, so the above example would be as follows:hostname

org.apache.camel:context=camel-1,type=context,name=camel-1

If you configure a name on the then that name is part of the as well. For example if we haveCamelContext ObjectName

xml<camelContext id="myCamel" ...>

Then the MBean names will be as follows:

org.apache.camel:context=localhost/myCamel,type=context,name=myCamel

Now if there is a naming clash in the JVM, such as there already exists a MBean with that given name above, then Camel will by default try to auto correct
this by finding a new free name in the by using a counter. As shown below the counter is now appended, so we have as JMXMBeanServer myCamel-1
part of the :ObjectName

org.apache.camel:context=localhost/myCamel-1,type=context,name=myCamel

This is possible because Camel uses a naming pattern by default that supports the following tokens

#camelId# = the CamelContext id (eg the name)
#name# - same as #camelId#
#counter# - an incrementing counter
#bundleId# - the OSGi bundle id (only for OSGi environments)
#symbolicName# - the OSGi symbolic name (only for OSGi environments)
#version# - the OSGi bundle version (only for OSGi environments)

The default naming pattern is differentiated between OSGi and non-OSGi as follows:

non OSGI: #name#
OSGi: #bundleId#-#name#
OSGi Camel 2.13: #symbolicName#

However if there is a naming clash in the then Camel will automatic fallback and use the #counter# in the pattern to remedy this. And JMXMBeanServer
thus the following patterns will then be used:

non OSGI: #name#-#counter#
OSGi: #bundleId#-#name#-#counter#
OSGi Camel 2.13: #symbolicName#-#counter#

If you set an explicit naming pattern, then that pattern is always used, and the default patterns above is used. This allows us to have full control, very not
easily, of the naming for both the id in the as well the JMX MBeans in the .CamelContext Registry JMXMBeanRegistry

From onwards you can configure the default management name pattern using a JVM system property, to configure this globally for the JVM. Camel 2.15
Notice that you can override this pattern by configure it explicit, as shown in the examples further below.

Set a JVM system property to use a default management name pattern that prefixes the name with cool.

System.setProperty(JmxSystemPropertyKeys.MANAGEMENT_NAME_PATTERN, "cool-#name#");

So if we want to explicit name both the and to use fixed MBean names, that do not change e.g., has no counters, then we can use the CamelContext
new attribute:managementNamePattern

xml<camelContext id="myCamel" managementNamePattern="#name#">

Then the MBean names will always be as follows:

org.apache.camel:context=localhost/myCamel,type=context,name=myCamel

In Java, you can configure the as follows:managementNamePattern

context.getManagementNameStrategy().setNamePattern("#name#");

You can also use a different name in the than the id, so for example we can do:managementNamePattern

xml<camelContext id="myCamel" managementNamePattern="coolCamel">

You may want to do this in OSGi environments in case you do not want the OSGi bundle id as part of the MBean names. As the OSGi bundle id can
change if you restart the server, or uninstall and install the same application. You can then do as follows to not use the OSGi bundle id as part of the name:

xml<camelContext id="myCamel" managementNamePattern="#name#">

Note this requires that is unique in the entire JVM. If you install a 2nd Camel application that has the same id and myCamel CamelContext managementN
 then Camel will fail upon starting, and report a MBean already exists exception.amePattern

ManagementStrategy

Available as of Camel 2.1

Camel now provides a totally pluggable management strategy that allows you to be 100% in control of management. It is a rich interface with many
methods for management. Not only for adding and removing managed objects from the , but also event notification is provided as well using MBeanServer
the API. What it does, for example, is make it easier to provide an adapter for other management products. org.apache.camel.spi.EventNotifier
In addition, it also allows you to provide more details and features that are provided out of the box at Apache.

Configuring level of granularity for performance statistics

Available as of Camel 2.1

You can now set a pre set level whether performance statistics is enabled or not when Camel start ups. The levels are

 - As default but with additional statistics gathered during runtime such as fine grained level of usage of endpoints and more. This Extended
options requires Camel 2.16 *
All / Default - Camel will enable statistics for both routes and processors (fine grained). : the option was renamed to From Camel 2.16 All D

.efault
RoutesOnly - Camel will only enable statistics for routes (coarse grained)
Off - Camel will not enable statistics for any.

From onwards the performance statistics also include average load statistics per CamelContext and Route MBeans. The statistics is average Camel 2.9
load based on the number of in-flight exchanges, on a per 1, 5, and 15 minute rate. This is similar to load statistics on Unix systems. onwards Camel 2.11
allows you to explicit disable load performance statistics by setting on the . Note that it will be off if the loadStatisticsEnabled=false <jmxAgent>
statics level is configured to off as well. From onwards the load performance statistics is by default disabled. You can enable this by setting Camel 2.13 lo

 on the .adStatisticsEnabled=true <jmxAgent>

At runtime you can always use the management console (such as JConsole) to change on a given route or processor whether its statistics are enabled or
not.

What does statistics enabled mean?
Statistics enabled means that Camel will do fine grained performance statistics for that particular MBean. The statistics you can see are many, such as:
number of exchanges completed/failed, last/total/mina/max/mean processing time, first/last failed time, etc.

Using Java DSL you set this level by:

// only enable routes when Camel starts context.getManagementStrategy().setStatisticsLevel(ManagementStatisticsLevel.RoutesOnly);

https://cwiki.apache.org/confluence/display/CAMEL/Registry

And from Spring DSL you do:

xml<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" statisticsLevel="RoutesOnly"/> ... </camelContext>

Hiding sensitive information

Available as of Camel 2.12

By default, Camel enlists MBeans in JMX such as endpoints configured using . In this configuration, there may be sensitive information such as URIs
passwords. This information can be hidden by enabling the option as shown below:mask

Using Java DSL you turn this on by:

// only enable routes when Camel starts context.getManagementStrategy().getManagementAgent().setMask(true);

And from Spring DSL you do:

xml<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring"> <jmxAgent id="agent" mask="true"/> ... </camelContext>

This will mask having options such as password and passphrase, and use as the replacement value.URIs xxxxxx

Declaring which JMX attributes and operations to mask (hide sensitive information)

On the and , the org.apache.camel.api.management.ManagedAttribute org.apache.camel.api.management.ManagedOperation
attribute can be set to to indicate that the result of this JMX attribute/operation should be masked (if enabled on JMX agent, see above).mask true

For example, on the default managed endpoints from camel-core , we have org.apache.camel.api.management.mbean.ManagedEndpointMBean
declared that the JMX attribute is masked.EndpointUri

@ManagedAttribute(description = "Endpoint URI", mask = true) String getEndpointUri();

See Also

Management Example
Why is my processor not showing up in JConsole

https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Management+Example
https://cwiki.apache.org/confluence/display/CAMEL/Why+is+my+processor+not+showing+up+in+JConsole

	Camel JMX

