
Aggregator
Aggregator

This applies for Camel version 2.2 or older. If you use a newer version then the Aggregator has been rewritten from Camel 2.3 on and you
should use this link instead.Aggregator2

The from the allows you to combine a number of messages together into a single message.Aggregator EIP patterns

blocked URL

A correlation is used to determine the messages which should be aggregated together. If you want to aggregate all messages into a single Expression
message, just use a constant expression. An is used to combine all the message exchanges for a single correlation key into a AggregationStrategy
single message exchange. The default strategy just chooses the latest message; so its ideal for throttling messages.

For example, imagine a stock market data system; you are receiving 30,000 messages per second; you may want to throttle down the updates as, say, a
GUI cannot cope with such massive update rates. So you may want to aggregate these messages together so that within a window (defined by a
maximum number of messages or a timeout), messages for the same stock are aggregated together; by just choosing the latest message and discarding
the older prices. (You could apply a delta processing algorithm if you prefer to capture some of the history).

Using the Fluent Builders

The following example shows how to aggregate messages so that only the latest message for a specific value of the header are sent.cheese

Error formatting macro: snippet: java.lang.NullPointerException

If you were using JMS then you may wish to use the header as the correlation key; or some custom header for the stock symbol (using JMSDestination
the above stock market example).

from("activemq:someReallyFastTopic")
 .aggregator(header("JMSDestination"))
 .to("activemq:someSlowTopicForGuis");

You can of course use many different languages such as , , or various . Expression XPath XQuery SQL Scripting Languages
Here is an example using :XPath

//aggregate based on the message content using an XPath expression
//example assumes an XML document starting with <stockQuote symbol='...'>
//aggregate messages based on their symbol attribute within the <stockQuote> element
from("seda:start").aggregate().xpath("/stockQuote/@symbol", String.class).batchSize(5).to("mock:result");

//this example will aggregate all messages starting with <stockQuote symbol='APACHE'> into
//one exchange and all the other messages (different symbol or different root element) into another exchange.
from("seda:start").aggregate().xpath("name(/stockQuote[@symbol='APACHE'])", String.class).batchSize(5).to("mock:
result");

For further examples of this pattern in use you could look at the junit test case

Using the aggregator correctly

Torsten Mielke wrote a nice with his thoughts and experience on using the aggreagator. Its a well worth read.blog entry

AggregationStrategy changed in Camel 2.0

In Camel 2.0 the callback have been changed to also be invoked on the very first Exchange.AggregationStrategy

On the first invocation of the method the parameter is . The reason is that we have not aggregated anything aggregate oldExchange null
yet.
So its only the that has a value. Usually you just return the in this situation. But you still have the power to decide newExchange newExchange
what to do, for example you can do some alternation on the exchange or remove some headers. And a more common use case is for instance
to count some values from the body payload. That could be to sum up a total amount etc.

BatchTimeout and CompletionPredicate

You cannot use both and to trigger a completion based on either on reaching its goal first. The batch batchTimeout completionPredicate
timeout will always trigger first, at that given interval.

Error formatting macro: snippet: java.lang.NullPointerException

https://cwiki.apache.org/confluence/display/CAMEL/Aggregator2
http://www.enterpriseintegrationpatterns.com/Aggregator.html
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://www.enterpriseintegrationpatterns.com/img/Aggregator.gif
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/XQuery
https://cwiki.apache.org/confluence/display/CAMEL/SQL
https://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://svn.apache.org/viewvc/camel/tags/camel-2.2.0/camel-core/src/test/java/org/apache/camel/processor/AggregatorTest.java?view=markup
http://tmielke.blogspot.com/2009/01/using-camel-aggregator-correctly.html

Using the Spring XML Extensions

The following example shows how to create a simple aggregator using the XML notation; using an for the correlation value used to aggregate Expression
messages together.

Error formatting macro: snippet: java.lang.NullPointerException

You can specify your own if you prefer as shown in the following exampleAggregationStrategy

Error formatting macro: snippet: java.lang.NullPointerException

Notice how the attribute is used on the element to refer to the custom strategy in Spring.strategyRef <aggregator>

Exchange Properties

The following properties is set on each Exchange that are aggregated:

header type description

org.apache.camel.Exchange.AggregatedCount int Camel 1.x: The total number of Exchanges aggregated in this combined Exchange.

CamelAggregatedSize int Camel 2.0: The total number of Exchanges aggregated into this combined Exchange.

CamelAggregatedIndex int Camel 2.0: The current index of this Exchange in the batch.

Batch options

The aggregator supports the following batch options:

Option Default Description

batchSi
ze

100 The batch size. This is the number of incoming exchanges that is processed by the aggregator and when this threshold is reached the batch in
is completed and send.

Camel 1.6.2/2.0: You can disable the batch size so the Aggregator is only triggered by timeout by setting the to 0 (or negative).batchSize

In or older you can set the to a very large number to archive the same.Camel 1.6.1 batchSize

outBatc
hSize

0 Camel 1.5: The batch size. This is the number of exchanges currently aggregated in the . When this threshold out AggregationCollection
is reached the batch is completed and send. By default this option is disabled. The difference to the options is that this is for batchSize
outgoing, so setting this size to e.g. 50 ensures that this batch will at maximum contain 50 exchanges when its sent.

batchTi
meout

1000L Timeout in millis. How long should the aggregator wait before its completed and sends whatever it has currently aggregated.

groupEx
changes

false Camel 2.0: If enabled then Camel will group all aggregated Exchanges into a single combined org.apache.camel.impl.GroupedExchange
holder class that holds all the aggregated Exchanges. And as a result only one Exchange is being sent out from the aggregator. Can be used to
combine many incoming Exchanges into a single output Exchange without coding a custom yourself.AggregationStrategy

batchCo
nsumer

false Camel 2.0: This option is if the exchanges is coming from a . Then when enabled the will use the batch size Batch Consumer Aggregator
determined by the in the message header . See more details at . This can be used to Batch Consumer CamelBatchSize Batch Consumer
aggregate all files consumed from a endpoint in that given poll.File

complet
ionPred
icate

null Allows you to use a to signal when an aggregation is complete. See in top of this page.Predicate warning

AggregationCollection and AggregationStrategy

This aggregator uses a to store the exchanges that is currently aggregated. The uses a AggregationCollection AggregationCollection
correlation and an .Expression AggregationStrategy

The correlation is used to correlate the incoming exchanges. The default implementation will group messages based on the Expression
correlation expression. Other implementations could for instance just add all exchanges as a batch.

The element is in Camel 2.0. For earlier versions of Camel you will need to specify your expression without the correlationExpression
enclosing element.correlationExpression

<aggregator>
 <simple>header.cheese</simple>
 <to uri="mock:result"/>
</aggregator>

Error formatting macro: snippet: java.lang.NullPointerException

Error formatting macro: snippet: java.lang.NullPointerException

https://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Expression

The strategy is used for aggregate the old (lookup by its correlation id) and the new exchanges together into a single exchange. Possible
implementations include performing some kind of combining or delta processing, such as adding line items together into an invoice or just using
the newest exchange and removing old exchanges such as for state tracking or market data prices; where old values are of little use.

Camel provides these implementations:

DefaultAggregationCollection
PredicateAggregationCollection
UseLatestAggregationStrategy

Examples

Default example

By default Camel uses and , so this simple example will just keep the latest DefaultAggregationCollection UseLatestAggregationStrategy
received exchange for the given correlation :Expression

Error formatting macro: snippet: java.lang.NullPointerException

Using PredicateAggregationCollection

The is an extension to that uses a as well to determine the PredicateAggregationCollection DefaultAggregationCollection Predicate
completion. For instance the can test for a special header value, a number of maximum aggregated so far etc. To use this the routing is a bit Predicate
more complex as we need to create our object as follows:AggregationCollection

Error formatting macro: snippet: java.lang.NullPointerException

In this sample we use the predicate that we want at most 3 exchanges aggregated by the same correlation id, this is defined as:

header(Exchange.AGGREGATED_COUNT).isEqualTo(3)

Using this the aggregator will complete if we receive 3 exchanges with the same correlation id or when the specified timeout of 500 msecs has elapsed
(whichever criteria is met first).

Using Custom Aggregation Strategy

In this example we will aggregate incoming bids and want to aggregate the highest bid. So we provide our own strategy where we implement the code
logic:

Error formatting macro: snippet: java.lang.NullPointerException

Then we setup the routing as follows:

Error formatting macro: snippet: java.lang.NullPointerException

And since this is based on an unit test we show the test code that send the bids and what is expected as the :winners

Error formatting macro: snippet: java.lang.NullPointerException

Using Custom Aggregation Collection

In this example we will aggregate incoming bids and want to aggregate the bids in reverse order (this is just an example). So we provide our own collection
where we implement the code logic:

Error formatting macro: snippet: java.lang.NullPointerException

Then we setup the routing as follows:

Error formatting macro: snippet: java.lang.NullPointerException

And since this is based on an unit test we show the test code that send the bids and what is expected as the expected reverse order:

Error formatting macro: snippet: java.lang.NullPointerException

Custom aggregation collection in Spring DSL

You can also specify a custom aggregation collection in the Spring DSL. Here is an example for Camel 2.0

Error formatting macro: snippet: java.lang.NullPointerException

In Camel 1.5.1 you will need to specify the aggregator as:

<aggregator batchTimeout="500" collectionRef="aggregatorCollection">
 <expression/>

Error formatting macro: snippet: java.lang.NullPointerException

Error formatting macro: snippet: java.lang.NullPointerException

Error formatting macro: snippet: java.lang.NullPointerException

Error formatting macro: snippet: java.lang.NullPointerException

Error formatting macro: snippet: java.lang.NullPointerException

Error formatting macro: snippet: java.lang.NullPointerException

Error formatting macro: snippet: java.lang.NullPointerException

Error formatting macro: snippet: java.lang.NullPointerException

Error formatting macro: snippet: java.lang.NullPointerException

https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Predicate

 <to uri="mock:result"/>
</aggregator>

Using Grouped Exchanges

Available as of Camel 2.0

You can enable grouped exchanges to combine all aggregated exchanges into a single holder class org.apache.camel.impl.GroupedExchange
that contains all the individual aggregated exchanges. This allows you to process a single Exchange containing all the aggregated exchange. Lets start
with how to configure this in the router:

Error formatting macro: snippet: java.lang.NullPointerException

And the next part is part of an unit code that demonstrates this feature as we send in 5 exchanges each with a different value in the body. And we will only
get 1 exchange out of the aggregator, but we can access all the individual aggregated exchanges from the List which we can extract as a property from the
Exchange using the key .Exchange.GROUPED_EXCHANGE

Error formatting macro: snippet: java.lang.NullPointerException

Using Batch Consumer

Available as of Camel 2.0

The can work together with the to aggregate the total number of messages that the have reported. This Aggregator Batch Consumer Batch Consumer
allows you for instance to aggregate all files polled using the consumer.File

For example:

from("file://inbox")
 .aggregate(xpath("//order/@customerId"), new AggregateCustomerOrderStrategy()).batchConsumer().batchTimeout
(60000).to("bean:processOrder");

When using Camel will automatic adjust the according to reported by the in this case the file consumer. batchConsumer batchSize Batch Consumer
So if we poll in 7 files then the aggregator will aggregate all 7 files before it completes. As the timeout is still in play we set it to 60 seconds.

Using This Pattern

If you would like to use this EIP Pattern then please read the , you may also find the useful particularly the description of Getting Started Architecture Endpoi
 and . Then you could try out some of the first before trying this pattern out.nt URIs Examples

See also

The which uses an aggregatorLoan Broker Example
Blog post by Torsten Mielke about using the aggregator correctly.

Error formatting macro: snippet: java.lang.NullPointerException

Error formatting macro: snippet: java.lang.NullPointerException

https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/Batch+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Architecture
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/URIs
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Loan+Broker+Example
http://tmielke.blogspot.com/2009/01/using-camel-aggregator-correctly.html

	Aggregator

