
Book Tutorials

Tutorials
There now follows the documentation on camel tutorials

We have a number of tutorials as listed below. The tutorials often comes with source code which is either available in the Camel or attached to Download
the wiki page.

OAuth Tutorial
This tutorial demonstrates how to implement OAuth for a web application with Camel's component. The sample application of this tutorial is gauth
also online at http://gauthcloud.appspot.com/

Tutorial for Camel on Google App Engine
This tutorial demonstrates the usage of the . The sample application of this tutorial is also online at Camel Components for Google App Engine http
://camelcloud.appspot.com/

Tutorial on Spring Remoting with JMS
This tutorial is focused on different techniques with Camel for Client-Server communication.

Report Incident - This tutorial introduces Camel steadily and is based on a real life integration problem
This is a very long tutorial beginning from the start; its for entry level to Camel. Its based on a real life integration, showing how Camel can be
introduced in an existing solution. We do this in baby steps. The tutorial is currently work in progress, so check it out from time to time. The
tutorial explains some of the inner building blocks Camel uses under the covers. This is good knowledge to have when you start using Camel on
a higher abstract level where it can do wonders in a few lines of routing DSL.

Using Camel with ServiceMix a tutorial on using Camel inside .Apache ServiceMix

Better JMS Transport for CXF Webservice using Apache Camel Describes how to use the Camel Transport for CXF to attach a CXF Webservice
to a JMS Queue

Tutorial how to use good old Axis 1.4 with Camel
This tutorial shows that Camel does work with the good old frameworks such as AXIS that is/was widely used for WebService.

Tutorial on using Camel in a Web Application
This tutorial gives an overview of how to use Camel inside Tomcat, Jetty or any other servlet engine

Tutorial on Camel 1.4 for Integration
Another real-life scenario. The company sells widgets, with a somewhat unique business process (their customers periodically report what they've
purchased in order to get billed). However every customer uses a different data format and protocol. This tutorial goes through the process of
integrating (and testing!) several customers and their electronic reporting of the widgets they've bought, along with the company's response.

Tutorial how to build a Service Oriented Architecture using Camel with OSGI - Updated 20/11/2009
The tutorial has been designed in two parts. introduces basic concept to create a simple SOA solution using Camel and OSGI and The first part
deploy it in a OSGI Server like Apache Felix Karaf and Spring DM Server while the extends the part 4 to show How second ReportIncident tutorial
we can separate the different layers (domain, service, ...) of an application and deploy them in separate bundles. The Web Application has also
be modified in order to communicate to the OSGI bundles.

Several of the vendors on the page also offer various tutorials, webinars, examples, etc.... that may be useful.Commercial Camel Offerings

Examples
While not actual tutorials you might find working through the source of the various useful.Examples

Tutorial on Spring Remoting with JMS

Thanks
This tutorial was kindly donated to Apache Camel by Martin Gilday.

Preface

This tutorial aims to guide the reader through the stages of creating a project which uses Camel to facilitate the routing of messages from a JMS queue to
a service. The route works in a synchronous fashion returning a response to the client.Spring

Notice

These tutorials listed below, is hosted at Apache. We offer the page where we have a link collection for 3rd party Camel material, such Articles
as tutorials, blog posts, published articles, videos, pod casts, presentations, and so forth.

If you have written a Camel related article, then we are happy to provide a link to it. You can contact the Camel , for example using the Team Mail
, (or post a tweet with the word Apache Camel).ing Lists

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-OAuth
https://cwiki.apache.org/confluence/display/CAMEL/gauth
http://gauthcloud.appspot.com/
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial+for+Camel+on+Google+App+Engine
https://cwiki.apache.org/confluence/display/CAMEL/GAE
http://camelcloud.appspot.com/
http://camelcloud.appspot.com/
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-JmsRemoting
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/home.html
https://cwiki.apache.org/confluence/display/CAMEL/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-AXIS-Camel
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial+on+using+Camel+in+a+Web+Application
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Business-Partners
https://cwiki.apache.org/confluence/display/CAMEL/tutorial-osgi-camel-part1
https://cwiki.apache.org/confluence/display/CAMEL/tutorial-osgi-camel-part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Commercial+Camel+Offerings
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.springramework.org
https://cwiki.apache.org/confluence/display/CAMEL/Articles
https://cwiki.apache.org/confluence/display/CAMEL/Team
https://cwiki.apache.org/confluence/display/CAMEL/Mailing+Lists
https://cwiki.apache.org/confluence/display/CAMEL/Mailing+Lists

Prerequisites

This tutorial uses Maven to setup the Camel project and for dependencies for artifacts.

Distribution

This sample is distributed with the Camel distribution as .examples/camel-example-spring-jms

About

This tutorial is a simple example that demonstrates more the fact how well Camel is seamless integrated with Spring to leverage the best of both worlds.
This sample is client server solution using JMS messaging as the transport. The sample has two flavors of servers and also for clients demonstrating
different techniques for easy communication.

The Server is a JMS message broker that routes incoming messages to a business service that does computations on the received message and returns a
response.
The EIP patterns used in this sample are:

Pattern Description

Message
Channel

We need a channel so the Clients can communicate with the server.

Message The information is exchanged using the Camel Message interface.

Message
Translator

This is where Camel shines as the message exchange between the Server and the Clients are text based strings with numbers. However
our business service uses int for numbers. So Camel can do the message translation automatically.

Message
Endpoint

It should be easy to send messages to the Server from the the clients. This is achieved with Camel's powerful Endpoint pattern that even
can be more powerful combined with Spring remoting. The tutorial has clients using each kind of technique for this.

Point to
Point
Channel

The client and server exchange data using point to point using a JMS queue.

Event
Driven
Consumer

The JMS broker is event driven and is invoked when the client sends a message to the server.

We use the following Camel components:

Component Description

ActiveMQ We use Apache ActiveMQ as the JMS broker on the Server side

Bean We use the bean binding to easily route the messages to our business service. This is a very powerful component in Camel.

File In the AOP enabled Server we store audit trails as files.

JMS Used for the JMS messaging

Create the Camel Project
For the purposes of the tutorial a single Maven project will be used for both the client and server. Ideally you would break your application down into the
appropriate components.
mvn archetype:generate -DgroupId=org.example -DartifactId=CamelWithJmsAndSpring

Update the POM with Dependencies

First we need to have dependencies for the core Camel jars, spring, jms components, and finally ActiveMQ as the message broker.{snippet:
As we use spring xml configuration for the ActiveMQ JMS broker we need id=e1|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/pom.xml}

this dependency:{snippet:id=e2|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/pom.xml}

Writing the Server

Create the Spring Service

https://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/JMS

For this example the Spring service (our business service) on the server will be a simple multiplier which trebles in the received value.{snippet:
And the id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel/example/server/Multiplier.java}

implementation of this service is:{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel/example
Notice that this class has been annotated with the @Service spring annotation. This ensures that this class is registered as a bean in /server/Treble.java}

the registry with the given name .multiplier

Define the Camel Routes

{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel/example/server/ServerRoutes.java}This
defines a Camel route the JMS queue named the Spring named . Camel will create a consumer to the JMS queue which from numbers to bean multiplier
forwards all received messages onto the the Spring bean, using the method named .multiply

Configure Spring

The Spring config file is placed under as this is the default location used by the , which we will later use to run META-INF/spring Camel Maven Plugin
our server.
First we need to do the standard scheme declarations in the top. In the camel-server.xml we are using spring beans as the default namespace and bean:
springs . For configuring ActiveMQ we use and for Camel we of course have . Notice that we don't use version numbers for the context: broker: camel:
camel-spring schema. At runtime the schema is resolved in the Camel bundle. If we use a specific version number such as 1.4 then its IDE friendly as it
would be able to import it and provide smart completion etc. See for further details.Xml Reference {snippet:id=e1|lang=xml|url=camel/trunk/examples

We use Spring annotations for doing IoC dependencies and its /camel-example-spring-jms/src/main/resources/META-INF/spring/camel-server.xml}
component-scan features comes to the rescue as it scans for spring annotations in the given package name:{snippet:id=e2|lang=xml|url=camel/trunk

Camel will of course not be less than Spring in this regard so /examples/camel-example-spring-jms/src/main/resources/META-INF/spring/camel-server.xml}
it supports a similar feature for scanning of Routes. This is configured as shown below.
Notice that we also have enabled the so we will be able to introspect the Camel Server with a JMX Console.JMXAgent {snippet:id=e3|lang=xml|url=camel

The ActiveMQ JMS broker is also configured in this /trunk/examples/camel-example-spring-jms/src/main/resources/META-INF/spring/camel-server.xml}
xml file. We set it up to listen on TCP port 61610.{snippet:id=e4|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/META-

As this examples uses JMS then Camel needs a that is connected with the ActiveMQ broker. This is INF/spring/camel-server.xml} JMS component
configured as shown below:{snippet:id=e5|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/META-INF/spring/camel-

 The is configured in standard Spring beans, but the gem is that the bean id can be referenced from Camel routes - server.xml}Notice: JMS component
meaning we can do routing using the JMS Component by just using prefix in the route URI. What happens is that Camel will find in the Spring jms:
Registry for a bean with the id="jms". Since the bean id can have arbitrary name you could have named it id="jmsbroker" and then referenced to it in the
routing as from="jmsbroker:queue:numbers).to("multiplier");
We use the vm protocol to connect to the ActiveMQ server as its embedded in this application.

component-scan Defines the package to be scanned for Spring stereotype annotations, in this case, to load the "multiplier" bean

camel-context Defines the package to be scanned for Camel routes. Will find the class and create the routes contained within itServerRoutes

jms bean Creates the Camel JMS component

Run the Server

The Server is started using the class that can start camel-spring application out-of-the-box. The Server can be org.apache.camel.spring.Main
started in several flavors:

as a standard java main application - just start the classorg.apache.camel.spring.Main
using maven jave:exec
using camel:run

In this sample as there are two servers (with and without AOP) we have prepared some profiles in maven to start the Server of your choice.
The server is started with:
mvn compile exec:java -PCamelServer

Writing The Clients

This sample has three clients demonstrating different Camel techniques for communication

CamelClient using the for Spring template style codingProducerTemplate
CamelRemoting using Spring Remoting
CamelEndpoint using the Message Endpoint EIP pattern using a neutral Camel API

Client Using The ProducerTemplate

We will initially create a client by directly using . We will later create a client which uses Spring remoting to hide the fact that ProducerTemplate
messaging is being used.{snippet:id=e1|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/camel-client.xml}{snippet:
id=e2|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources/camel-client.xml}{snippet:id=e3|lang=xml|url=camel/trunk

The client will not use the so the Spring XML has been /examples/camel-example-spring-jms/src/main/resources/camel-client.xml} Camel Maven Plugin
placed in to not conflict with the server configs.src/main/resources

camelContext The Camel context is defined but does not contain any routes

https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Reference
https://cwiki.apache.org/confluence/display/CAMEL/Camel+JMX
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Run+Maven+Goal
https://cwiki.apache.org/confluence/display/CAMEL/ProducerTemplate
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin

1.
2.

3.

template The is used to place messages onto the JMS queueProducerTemplate

jms bean This initialises the Camel JMS component, allowing us to place messages onto the queue

And the CamelClient source code:{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel/example
The is retrieved from a Spring and used to manually place a message on the /client/CamelClient.java} ProducerTemplate ApplicationContext

"numbers" JMS queue. The method will use the exchange pattern InOut, which states that the call should be synchronous, and that the requestBody
caller expects a response.

Before running the client be sure that both the ActiveMQ broker and the are running.CamelServer

Client Using Spring Remoting

Spring Remoting "eases the development of remote-enabled services". It does this by allowing you to invoke remote services through your regular Java
interface, masking that a remote service is being called.{snippet:id=e1|lang=xml|url=camel/trunk/examples/camel-example-spring-jms/src/main/resources

The snippet above only illustrates the different and how Camel easily can setup and use Spring Remoting in one line /camel-client-remoting.xml}
configurations.

The will create a proxy service bean for you to use to make the remote invocations. The property details which Java interface is to proxy serviceInterface
be implemented by the proxy. The defines where messages sent to this proxy bean will be directed. Here we define the JMS endpoint with the serviceUrl
"numbers" queue we used when working with Camel template directly. The value of the property is the name that will be the given to the bean when it is id
exposed through the Spring . We will use this name to retrieve the service in our client. I have named the bean ApplicationContext multiplierProxy
simply to highlight that it is not the same multiplier bean as is being used by . They are in completely independent contexts and have no CamelServer
knowledge of each other. As you are trying to mask the fact that remoting is being used in a real application you would generally not include proxy in the
name.

And the Java client source code:{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel/example
Again, the client is similar to the original client, but with some important differences./client/CamelClientRemoting.java}

The Spring context is created with the new camel-client-remoting.xml
We retrieve the proxy bean instead of a . In a non-trivial example you would have the bean injected as in the standard ProducerTemplate
Spring manner.
The multiply method is then called directly. In the client we are now working to an interface. There is no mention of Camel or JMS inside our Java
code.

Client Using Message Endpoint EIP Pattern

This client uses the Message Endpoint EIP pattern to hide the complexity to communicate to the Server. The Client uses the same simple API to get hold
of the endpoint, create an exchange that holds the message, set the payload and create a producer that does the send and receive. All done using the
same neutral Camel API for the components in Camel. So if the communication was socket TCP based you just get hold of a different endpoint and all all
the java code stays the same. That is really powerful.

Okay enough talk, show me the code!{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-spring-jms/src/main/java/org/apache/camel
Switching to a different component is just a matter of using the correct endpoint. So if we had defined a TCP /example/client/CamelClientEndpoint.java}

endpoint as: then its just a matter of getting hold of this endpoint instead of the JMS and all the rest of the java code "mina:tcp://localhost:61610"
is exactly the same.

Run the Clients

The Clients is started using their main class respectively.

as a standard java main application - just start their main class
using maven jave:exec

In this sample we start the clients using maven:
mvn compile exec:java -PCamelClient
mvn compile exec:java -PCamelClientRemoting
mvn compile exec:java -PCamelClientEndpoint

Also see the Maven file how the profiles for the clients is defined.pom.xml

Using the Camel Maven Plugin

The allows you to run your Camel routes directly from Maven. This negates the need to create a host application, as we did with Camel Maven Plugin
Camel server, simply to start up the container. This can be very useful during development to get Camel routes running quickly.

pom.xml<build> <plugins> <plugin> <groupId>org.apache.camel</groupId> <artifactId>camel-maven-plugin</artifactId> </plugin> </plugins> </build>

All that is required is a new plugin definition in your Maven POM. As we have already placed our Camel config in the default location (camel-server.xml
has been placed in META-INF/spring/) we do not need to tell the plugin where the route definitions are located. Simply run .mvn camel:run

Using Camel JMX

https://cwiki.apache.org/confluence/display/CAMEL/Spring+Remoting
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Plugin

Camel has extensive support for JMX and allows us to inspect the Camel Server at runtime. As we have enabled the JMXAgent in our tutorial we can fire
up the jconsole and connect to the following service URI: . Notice that Camel service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/camel
will log at INFO level the JMX Connector URI:

... DefaultInstrumentationAgent INFO JMX connector thread started on service:jmx:rmi:///jndi/rmi://claus-acer:1099/jmxrmi/camel ...

In the screenshot below we can see the route and its performance metrics:

See Also

Spring Remoting with JMS Example on Amin Abbaspour's Weblog

Tutorial - camel-example-reportincident

Introduction

Creating this tutorial was inspired by a real life use-case I discussed over the phone with a colleague. He was working at a client whom uses a heavy-
weight integration platform from a very large vendor. He was in talks with developer shops to implement a new integration on this platform. His trouble was
the shop tripled the price when they realized the platform of choice. So I was wondering how we could do this integration with Camel. Can it be done,
without tripling the cost .

This tutorial is written during the development of the integration. I have decided to start off with a sample that isn't Camel's but standard Java and then
plugin Camel as we goes. Just as when people needed to learn Spring you could consume it piece by piece, the same goes with Camel.

The target reader is person whom hasn't experience or just started using Camel.

Motivation for this tutorial

I wrote this tutorial motivated as Camel lacked an example application that was based on the web application deployment model. The entire world hasn't
moved to pure OSGi deployments yet.

The use-case

The goal is to allow staff to report incidents into a central administration. For that they use client software where they report the incident and submit it to the
central administration. As this is an integration in a transition phase the administration should get these incidents by email whereas they are manually
added to the database. The client software should gather the incident and submit the information to the integration platform that in term will transform the
report into an email and send it to the central administrator for manual processing.

The full source code for this tutorial as complete is part of the Apache Camel distribution in the examples/camel-example-
 directoryreportincident

http://aminsblog.wordpress.com/2008/05/06/15/
http://aminsblog.wordpress.com/

The figure below illustrates this process. The end users reports the incidents using the client applications. The incident is sent to the central integration
platform as webservice. The integration platform will process the incident and send an OK acknowledgment back to the client. Then the integration will
transform the message to an email and send it to the administration mail server. The users in the administration will receive the emails and take it from
there.

In EIP patterns

We distill the use case as patterns:EIP

Parts

This tutorial is divided into sections and parts:

Section A: Existing Solution, how to slowly use Camel

Part 1 - This first part explain how to setup the project and get a webservice exposed using . In fact we don't touch Camel yet.Apache CXF

Part 2 - Now we are ready to introduce Camel piece by piece (without using Spring or any XML configuration file) and create the full feature integration.
This part will introduce different Camel's concepts and How we can build our solution using them like :

CamelContext
Endpoint, Exchange & Producer
Components : Log, File

Part 3 - Continued from part 2 where we implement that last part of the solution with the event driven consumer and how to send the email through the
Mail component.

Section B: The Camel Solution

Part 4 - We now turn into the path of Camel where it excels - the routing.
Part 5 - Is about how embed Camel with Spring and using endpoints directly in CamelCXF
Part 6 - Showing a alternative solution primarily using XML instead of Java code

Links

Introduction
Part 1
Part 2
Part 3
Part 4
Part 5
Part 6

Using Axis 2

See this blog entry by Sagara demonstrating how to use instead of as the web service framework.Apache Axis 2 Apache CXF

http://www.enterpriseintegrationpatterns.com
http://cxf.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/CXF
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part1
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part2
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part3
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part4
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part5
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident-Part6
http://ws.apache.org/axis2/
http://cxf.apache.org/

Better JMS Transport for CXF Webservice using Apache Camel

Configuring JMS in Apache CXF before Version 2.1.3 is possible but not really easy or nice. This article shows how to use Apache Camel to provide a
better JMS Transport for CXF.

Update: Since CXF 2.1.3 there is a new way of configuring JMS (). It makes JMS config for CXF as easy as with Camel. Using the JMSConfigFeature
Using Camel for JMS is still a good idea if you want to use the rich feature of Camel for routing and other Integration Scenarios that CXF does not support.

You can find the original announcement for this Tutorial and some additional info on Christian Schneider´s Blog

So how to connect Apache Camel and CXF

The best way to connect Camel and CXF is using the . This is a camel module that registers with cxf as a new transport. It is quite Camel transport for CXF
easy to configure.

<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">
 <property name="bus" ref="cxf" />
 <property name="camelContext" ref="camelContext" />
 <property name="transportIds">
 <list>
 <value>http://cxf.apache.org/transports/camel</value>
 </list>
 </property>
</bean>

This bean registers with CXF and provides a new transport prefix camel:// that can be used in CXF address configurations. The bean references a bean
cxf which will be already present in your config. The other refrenceis a camel context. We will later define this bean to provide the routing config.

How is JMS configured in Camel

In camel you need two things to configure JMS. A ConnectionFactory and a JMSComponent. As ConnectionFactory you can simply set up the normal
Factory your JMS provider offers or . In this example we use the ConnectionFactory provided by ActiveMQ.bind a JNDI ConnectionFactory

Error rendering macro 'include'

org.owasp.validator.html.ScanException: java.util.EmptyStackException

Error rendering macro 'include'

null

Error rendering macro 'include'

null

Error rendering macro 'include'

null

http://cxf.apache.org/docs/using-the-jmsconfigfeature.html
http://www.liquid-reality.de/display/liquid/2008/08/25/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
http://activemq.apache.org/camel/camel-transport-for-cxf.html
http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-jee-jndi-lookup-environment-single

<bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
</bean>

Then we set up the JMSComponent. It offers a new transport prefix to camel that we simply call jms. If we need several JMSComponents we can
differentiate them by their name.

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory" ref="jmsConnectionFactory" />
 <property name="useMessageIDAsCorrelationID" value="true" />
</bean>

You can find more details about the . For example you find the complete configuration options and a JNDI sample there.JMSComponent at the Camel Wiki

Setting up the CXF client

We will configure a simple CXF webservice client. It will use stub code generated from a wsdl. The webservice client will be configured to use JMS directly.
You can also use a direct: Endpoint and do the routing to JMS in the Camel Context.

<client id="CustomerService" xmlns="http://cxf.apache.org/jaxws" xmlns:customer="http://customerservice.example.
com/"
 serviceName="customer:CustomerServiceService"
 endpointName="customer:CustomerServiceEndpoint"
 address="camel:jms:queue:CustomerService"
 serviceClass="com.example.customerservice.CustomerService">
</client>

We explicitly configure serviceName and endpointName so they are not read from the wsdl. The names we use are arbitrary and have no further function
but we set them to look nice. The serviceclass points to the service interface that was generated from the wsdl. Now the important thing is address. Here
we tell cxf to use the camel transport, use the JmsComponent who registered the prefix "jms" and use the queue "CustomerService".

Setting up the CamelContext

As we do not need additional routing an empty bean will suffice.CamelContext

<camelContext id="camelContext" xmlns="http://activemq.apache.org/camel/schema/spring">
</camelContext>

Running the Example

Download the example project here

Follow the readme.txt

Conclusion

As you have seen in this example you can use Camel to connect services to JMS easily while being able to also use the rich integration features of
Apache Camel.

Tutorial using Axis 1.4 with Apache Camel

Tutorial using Axis 1.4 with Apache Camel
Prerequisites

Removed from distribution

This example has been removed from onwards. Apache Axis 1.4 is a very old and unsupported framework. We encourage users to Camel 2.9
use instead of Axis.CXF

http://activemq.apache.org/camel/jms.html
http://activemq.apache.org/camel/spring.html
https://cwiki.apache.org/confluence/download/attachments/95908/cxfcamelexample.zip?version=2&modificationDate=1219846788000&api=v2
https://cwiki.apache.org/confluence/display/CAMEL/CXF

Distribution
Introduction
Setting up the project to run Axis

Maven 2
wsdl
Configuring Axis
Running the Example

Integrating Spring
Using Spring

Integrating Camel
CamelContext
Store a file backup

Running the example
Unit Testing

Smarter Unit Testing with Spring
Unit Test calling WebService
Annotations
The End
See Also

Prerequisites

This tutorial uses Maven 2 to setup the Camel project and for dependencies for artifacts.

Distribution

This sample is distributed with the Camel 1.5 distribution as .examples/camel-example-axis

Introduction

Apache Axis is/was widely used as a webservice framework. So in line with some of the other tutorials to demonstrate how Camel is not an invasive
framework but is flexible and integrates well with existing solution.

We have an existing solution that exposes a webservice using Axis 1.4 deployed as web applications. This is a common solution. We use contract first so
we have Axis generated source code from an existing wsdl file. Then we show how we introduce Spring and Camel to integrate with Axis.

This tutorial uses the following frameworks:

Maven 2.0.9
Apache Camel 1.5.0
Apache Axis 1.4
Spring 2.5.5

Setting up the project to run Axis

This first part is about getting the project up to speed with Axis. We are not touching Camel or Spring at this time.

Maven 2

Axis dependencies is available for maven 2 so we configure our pom.xml as:

http://ws.apache.org/axis/

 <dependency>
 <groupId>org.apache.axis</groupId>
 <artifactId>axis</artifactId>
 <version>1.4</version>
 </dependency>

 <dependency>
 <groupId>org.apache.axis</groupId>
 <artifactId>axis-jaxrpc</artifactId>
 <version>1.4</version>
 </dependency>

 <dependency>
 <groupId>org.apache.axis</groupId>
 <artifactId>axis-saaj</artifactId>
 <version>1.4</version>
 </dependency>

 <dependency>
 <groupId>axis</groupId>
 <artifactId>axis-wsdl4j</artifactId>
 <version>1.5.1</version>
 </dependency>

 <dependency>
 <groupId>commons-discovery</groupId>
 <artifactId>commons-discovery</artifactId>
 <version>0.4</version>
 </dependency>

 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 </dependency>

Then we need to configure maven to use Java 1.5 and the Axis maven plugin that generates the source code based on the wsdl file:

<!-- to compile with 1.5 -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>axistools-maven-plugin</artifactId>
 <configuration>
 <sourceDirectory>src/main/resources/</sourceDirectory>
 <packageSpace>com.mycompany.myschema</packageSpace>
 <testCases>false</testCases>
 <serverSide>true</serverSide>
 <subPackageByFileName>false</subPackageByFileName>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

wsdl

We use the same .wsdl file as the and copy it to Tutorial-Example-ReportIncident src/main/webapp/WEB-INF/wsdl

<?xml version="1.0" encoding="ISO-8859-1"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://reportincident.example.camel.apache.org"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://reportincident.example.camel.apache.org">

 <!-- Type definitions for input- and output parameters for webservice -->
 <wsdl:types>
 <xs:schema targetNamespace="http://reportincident.example.camel.apache.org">
 <xs:element name="inputReportIncident">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="incidentId"/>
 <xs:element type="xs:string" name="incidentDate"/>
 <xs:element type="xs:string" name="givenName"/>
 <xs:element type="xs:string" name="familyName"/>
 <xs:element type="xs:string" name="summary"/>
 <xs:element type="xs:string" name="details"/>
 <xs:element type="xs:string" name="email"/>
 <xs:element type="xs:string" name="phone"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="outputReportIncident">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="code"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-Example-ReportIncident

 </wsdl:types>

 <!-- Message definitions for input and output -->
 <wsdl:message name="inputReportIncident">
 <wsdl:part name="parameters" element="tns:inputReportIncident"/>
 </wsdl:message>
 <wsdl:message name="outputReportIncident">
 <wsdl:part name="parameters" element="tns:outputReportIncident"/>
 </wsdl:message>

 <!-- Port (interface) definitions -->
 <wsdl:portType name="ReportIncidentEndpoint">
 <wsdl:operation name="ReportIncident">
 <wsdl:input message="tns:inputReportIncident"/>
 <wsdl:output message="tns:outputReportIncident"/>
 </wsdl:operation>
 </wsdl:portType>

 <!-- Port bindings to transports and encoding - HTTP, document literal encoding is used -->
 <wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="ReportIncident">
 <soap:operation
 soapAction="http://reportincident.example.camel.apache.org/ReportIncident"
 style="document"/>
 <wsdl:input>
 <soap:body parts="parameters" use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body parts="parameters" use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <!-- Service definition -->
 <wsdl:service name="ReportIncidentService">
 <wsdl:port name="ReportIncidentPort" binding="tns:ReportIncidentBinding">
 <soap:address location="http://reportincident.example.camel.apache.org"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

Configuring Axis

Okay we are now setup for the contract first development and can generate the source file. For now we are still only using standard Axis and not Spring
nor Camel. We still need to setup Axis as a web application so we configure the web.xml in as:src/main/webapp/WEB-INF/web.xml

 <servlet>
 <servlet-name>axis</servlet-name>
 <servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>axis</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>

The web.xml just registers Axis servlet that is handling the incoming web requests to its servlet mapping. We still need to configure Axis itself and this is
done using its special configuration file . We nearly get this file for free if we let Axis generate the source code so we run the server-config.wsdd
maven goal:

mvn axistools:wsdl2java

The tool will generate the source code based on the wsdl and save the files to the following folder:

.\target\generated-sources\axistools\wsdl2java\org\apache\camel\example\reportincident
deploy.wsdd
InputReportIncident.java
OutputReportIncident.java
ReportIncidentBindingImpl.java
ReportIncidentBindingStub.java
ReportIncidentService_PortType.java
ReportIncidentService_Service.java
ReportIncidentService_ServiceLocator.java
undeploy.wsdd

This is standard Axis and so far no Camel or Spring has been touched. To implement our webservice we will add our code, so we create a new class Axis
 that implements the port type interface where we can implement our code logic what happens when the webservice is ReportIncidentService

invoked.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;

import java.rmi.RemoteException;

/**
 * Axis webservice
 */
public class AxisReportIncidentService implements ReportIncidentService_PortType {

 public OutputReportIncident reportIncident(InputReportIncident parameters) throws RemoteException {
 System.out.println("Hello AxisReportIncidentService is called from " + parameters.getGivenName());

 OutputReportIncident out = new OutputReportIncident();
 out.setCode("OK");
 return out;
 }

}

Now we need to configure Axis itself and this is done using its file. We nearly get this for for free from the auto generated code, server-config.wsdd
we copy the stuff from and made a few modifications:deploy.wsdd

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/" xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
>
 <!-- global configuration -->
 <globalConfiguration>
 <parameter name="sendXsiTypes" value="true"/>
 <parameter name="sendMultiRefs" value="true"/>
 <parameter name="sendXMLDeclaration" value="true"/>
 <parameter name="axis.sendMinimizedElements" value="true"/>
 </globalConfiguration>
 <handler name="URLMapper" type="java:org.apache.axis.handlers.http.URLMapper"/>

 <!-- this service is from deploy.wsdd -->
 <service name="ReportIncidentPort" provider="java:RPC" style="document" use="literal">
 <parameter name="wsdlTargetNamespace" value="http://reportincident.example.camel.apache.org"/>
 <parameter name="wsdlServiceElement" value="ReportIncidentService"/>
 <parameter name="schemaUnqualified" value="http://reportincident.example.camel.apache.org"/>
 <parameter name="wsdlServicePort" value="ReportIncidentPort"/>
 <parameter name="className" value="org.apache.camel.example.reportincident.ReportIncidentBindingImpl"/>
 <parameter name="wsdlPortType" value="ReportIncidentService"/>
 <parameter name="typeMappingVersion" value="1.2"/>
 <operation name="reportIncident" qname="ReportIncident" returnQName="retNS:outputReportIncident" xmlns:
retNS="http://reportincident.example.camel.apache.org"
 returnType="rtns:>outputReportIncident" xmlns:rtns="http://reportincident.example.camel.apache.
org"
 soapAction="http://reportincident.example.camel.apache.org/ReportIncident" >
 <parameter qname="pns:inputReportIncident" xmlns:pns="http://reportincident.example.camel.apache.org"
 type="tns:>inputReportIncident" xmlns:tns="http://reportincident.example.camel.apache.org"/>
 </operation>
 <parameter name="allowedMethods" value="reportIncident"/>

 <typeMapping
 xmlns:ns="http://reportincident.example.camel.apache.org"
 qname="ns:>outputReportIncident"
 type="java:org.apache.camel.example.reportincident.OutputReportIncident"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle=""
 />
 <typeMapping
 xmlns:ns="http://reportincident.example.camel.apache.org"
 qname="ns:>inputReportIncident"
 type="java:org.apache.camel.example.reportincident.InputReportIncident"
 serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
 deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
 encodingStyle=""
 />
 </service>

 <!-- part of Axis configuration -->
 <transport name="http">
 <requestFlow>
 <handler type="URLMapper"/>
 <handler type="java:org.apache.axis.handlers.http.HTTPAuthHandler"/>
 </requestFlow>
 </transport>
</deployment>

The and is not in the deploy.wsdd file so you gotta write that yourself. The is a 100% copy from deploy.wsdd. Axis globalConfiguration transport service
has more configuration to it than shown here, but then you should check the .Axis documentation

What we need to do now is important, as we need to modify the above configuration to use our webservice class than the default one, so we change the
classname parameter to our class :AxisReportIncidentService

<parameter name="className" value="org.apache.camel.example.axis.AxisReportIncidentService"/>

http://ws.apache.org/axis/

Running the Example

Now we are ready to run our example for the first time, so we use Jetty as the quick web container using its maven command:

mvn jetty:run

Then we can hit the web browser and enter this URL: and you should see the famous http://localhost:8080/camel-example-axis/services
Axis start page with the text .And now... Some Services

Clicking on the .wsdl link shows the wsdl file, but what. It's an auto generated one and not our original .wsdl file. So we need to fix this ASAP and this is
done by configuring Axis in the server-config.wsdd file:

 <service name="ReportIncidentPort" provider="java:RPC" style="document" use="literal">
 <wsdlFile>/WEB-INF/wsdl/report_incident.wsdl</wsdlFile>
 ...

We do this by adding the wsdlFile tag in the service element where we can point to the real .wsdl file.

Integrating Spring

First we need to add its dependencies to the .pom.xml

 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>2.5.5</version>
 </dependency>

Spring is integrated just as it would like to, we add its listener to the web.xml and a context parameter to be able to configure precisely what spring xml files
to use:

 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath:axis-example-context.xml
 </param-value>
 </context-param>

 <listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
 </listener>

Next is to add a plain spring XML file named in the src/main/resources folder.axis-example-context.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-
2.5.xsd">

</beans>

The spring XML file is currently empty. We hit jetty again with just to make sure Spring was setup correctly.mvn jetty:run

Using Spring

We would like to be able to get hold of the Spring ApplicationContext from our webservice so we can get access to the glory spring, but how do we do
this? And our webservice class AxisReportIncidentService is created and managed by Axis we want to let Spring do this. So we have two problems.

http://localhost:8080/camel-example-axis/services

We solve these problems by creating a delegate class that Axis creates, and this delegate class gets hold on Spring and then gets our real webservice as
a spring bean and invoke the service.

First we create a new class that is 100% independent from Axis and just a plain POJO. This is our real service.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
 * Our real service that is not tied to Axis
 */
public class ReportIncidentService {

 public OutputReportIncident reportIncident(InputReportIncident parameters) {
 System.out.println("Hello ReportIncidentService is called from " + parameters.getGivenName());

 OutputReportIncident out = new OutputReportIncident();
 out.setCode("OK");
 return out;
 }

}

So now we need to get from AxisReportIncidentService to this one ReportIncidentService using Spring. Well first of all we add our real service to spring
XML configuration file so Spring can handle its lifecycle:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-
2.5.xsd">

 <bean id="incidentservice" class="org.apache.camel.example.axis.ReportIncidentService"/>

</beans>

And then we need to modify AxisReportIncidentService to use Spring to lookup the spring bean and delegate the call. We do this by id="incidentservice"
extending the spring class so the refactored code is:org.springframework.remoting.jaxrpc.ServletEndpointSupport

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;
import org.springframework.remoting.jaxrpc.ServletEndpointSupport;

import java.rmi.RemoteException;

/**
 * Axis webservice
 */
public class AxisReportIncidentService extends ServletEndpointSupport implements ReportIncidentService_PortType
{

 public OutputReportIncident reportIncident(InputReportIncident parameters) throws RemoteException {
 // get hold of the spring bean from the application context
 ReportIncidentService service = (ReportIncidentService) getApplicationContext().getBean
("incidentservice");

 // delegate to the real service
 return service.reportIncident(parameters);
 }

}

To see if everything is okay we run .mvn jetty:run

In the code above we get hold of our service at each request by looking up in the application context. However Spring also supports an method where init
we can do this once. So we change the code to:

public class AxisReportIncidentService extends ServletEndpointSupport implements ReportIncidentService_PortType
{

 private ReportIncidentService service;

 @Override
 protected void onInit() throws ServiceException {
 // get hold of the spring bean from the application context
 service = (ReportIncidentService) getApplicationContext().getBean("incidentservice");
 }

 public OutputReportIncident reportIncident(InputReportIncident parameters) throws RemoteException {
 // delegate to the real service
 return service.reportIncident(parameters);
 }

}

So now we have integrated Axis with Spring and we are ready for Camel.

Integrating Camel

Again the first step is to add the dependencies to the maven file:pom.xml

 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 <version>1.5.0</version>
 </dependency>

 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring</artifactId>
 <version>1.5.0</version>
 </dependency>

Now that we have integrated with Spring then we easily integrate with Camel as Camel works well with Spring.

We choose to integrate Camel in the Spring XML file so we add the camel namespace and the schema location:

xmlns:camel="http://activemq.apache.org/camel/schema/spring"
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/camel/schema/spring/camel-spring.xsd"

CamelContext

CamelContext is the heart of Camel its where all the , , , etc. is registered. So we setup a and the spring XML routes endpoints components CamelContext
files looks like:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://activemq.apache.org/camel/schema/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-
2.5.xsd
 http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/camel/schema/spring/camel-
spring.xsd">

 <bean id="incidentservice" class="org.apache.camel.example.axis.ReportIncidentService"/>

 <camel:camelContext id="camel">
 <!-- TODO: Here we can add Camel stuff -->
 </camel:camelContext>

</beans>

Store a file backup

We want to store the web service request as a file before we return a response. To do this we want to send the file content as a to an message endpoint
that produces the . So we need to do two steps:file

configure the file backup endpoint
send the message to the endpoint

The endpoint is configured in spring XML so we just add it as:

 <camel:camelContext id="camelContext">
 <!-- endpoint named backup that is configued as a file component -->
 <camel:endpoint id="backup" uri="file://target?append=false"/>
 </camel:camelContext>

Camel does not require Spring

Camel does not require Spring, we could easily have used Camel without Spring, but most users prefer to use Spring also.

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/File2

In the we have defined our endpoint with the id and configured it use the that we know from the internet. Its a CamelContext backup URL notation file
scheme that accepts a context and some options. The contest is and its the folder to store the file. The option is just as the internet with ? and & target
for subsequent options. We configure it to not append, meaning than any existing file will be overwritten. See the component for options and how to File
use the camel file endpoint.

Next up is to be able to send a message to this endpoint. The easiest way is to use a ProducerTemplate. A ProducerTemplate is inspired by Spring
template pattern with for instance JmsTemplate or JdbcTemplate in mind. The template that all the grunt work and exposes a simple interface to the end-
user where he/she can set the payload to send. Then the template will do proper resource handling and all related issues in that regard. But how do we get
hold of such a template? Well the is able to provide one. This is done by configuring the template on the camel context in the spring XML as:CamelContext

 <camel:camelContext id="camelContext">
 <!-- producer template exposed with this id -->
 <camel:template id="camelTemplate"/>

 <!-- endpoint named backup that is configued as a file component -->
 <camel:endpoint id="backup" uri="file://target?append=false"/>
 </camel:camelContext>

Then we can expose a ProducerTemplate property on our service with a setter in the Java code as:

public class ReportIncidentService {

 private ProducerTemplate template;

 public void setTemplate(ProducerTemplate template) {
 this.template = template;
 }

And then let Spring handle the dependency inject as below:

 <bean id="incidentservice" class="org.apache.camel.example.axis.ReportIncidentService">
 <!-- set the producer template to use from the camel context below -->
 <property name="template" ref="camelTemplate"/>
 </bean>

Now we are ready to use the producer template in our service to send the payload to the endpoint. The template has many methods for this sendXXX
purpose. But before we send the payload to the file endpoint we must also specify what filename to store the file as. This is done by sending meta data
with the payload. In Camel metadata is sent as headers. Headers is just a plain . So if we needed to send several metadata then Map<String, Object>
we could construct an ordinary HashMap and put the values in there. But as we just need to send one header with the filename Camel has a convenient
send method so we choose this one.sendBodyAndHeader

 public OutputReportIncident reportIncident(InputReportIncident parameters) {
 System.out.println("Hello ReportIncidentService is called from " + parameters.getGivenName());

 String data = parameters.getDetails();

 // store the data as a file
 String filename = parameters.getIncidentId() + ".txt";
 // send the data to the endpoint and the header contains what filename it should be stored as
 template.sendBodyAndHeader("backup", data, "org.apache.camel.file.name", filename);

 OutputReportIncident out = new OutputReportIncident();
 out.setCode("OK");
 return out;
 }

The template in the code above uses 4 parameters:

the endpoint name, in this case the id referring to the endpoint defined in Spring XML in the camelContext element.
the payload, can be any kind of object
the key for the header, in this case a Camel keyword to set the filename
and the value for the header

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=53767
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

Running the example

We start our integration with maven using . Then we open a browser and hit . Jetty is so smart that it display mvn jetty:run http://localhost:8080
a frontpage with links to the deployed application so just hit the link and you get our application. Now we hit append /services to the URL to access the
Axis frontpage. The URL should be .http://localhost:8080/camel-example-axis/services

You can then test it using a web service test tools such as . SoapUI
Hitting the service will output to the console

2008-09-06 15:01:41.718::INFO: Started SelectChannelConnector @ 0.0.0.0:8080
[INFO] Started Jetty Server
Hello ReportIncidentService is called from Ibsen

And there should be a file in the target subfolder.

dir target /b
123.txt

Unit Testing

We would like to be able to unit test our class. So we add junit to the maven dependency:ReportIncidentService

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.2</version>
 <scope>test</scope>
 </dependency>

And then we create a plain junit testcase for our service class.

http://localhost:8080
http://localhost:8080/camel-example-axis/services
http://www.soapui.org/

package org.apache.camel.example.axis;

import junit.framework.TestCase;
import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
 * Unit test of service
 */
public class ReportIncidentServiceTest extends TestCase {

 public void testIncident() {
 ReportIncidentService service = new ReportIncidentService();

 InputReportIncident input = createDummyIncident();
 OutputReportIncident output = service.reportIncident(input);
 assertEquals("OK", output.getCode());
 }

 protected InputReportIncident createDummyIncident() {
 InputReportIncident input = new InputReportIncident();
 input.setEmail("davsclaus@apache.org");
 input.setIncidentId("12345678");
 input.setIncidentDate("2008-07-13");
 input.setPhone("+45 2962 7576");
 input.setSummary("Failed operation");
 input.setDetails("The wrong foot was operated.");
 input.setFamilyName("Ibsen");
 input.setGivenName("Claus");
 return input;
 }

}

Then we can run the test with maven using: . But we will get a failure:mvn test

Running org.apache.camel.example.axis.ReportIncidentServiceTest
Hello ReportIncidentService is called from Claus
Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.235 sec <<< FAILURE!

Results :

Tests in error:
 testIncident(org.apache.camel.example.axis.ReportIncidentServiceTest)

Tests run: 1, Failures: 0, Errors: 1, Skipped: 0

What is the problem? Well our service uses a CamelProducer (the template) to send a message to the file endpoint so the message will be stored in a file.
What we need is to get hold of such a producer and inject it on our service, by calling the setter.

Since Camel is very light weight and embedable we are able to create a CamelContext and add the endpoint in our unit test code directly. We do this to
show how this is possible:

 private CamelContext context;

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 // CamelContext is just created like this
 context = new DefaultCamelContext();

 // then we can create our endpoint and set the options
 FileEndpoint endpoint = new FileEndpoint();
 // the endpoint must have the camel context set also
 endpoint.setCamelContext(context);
 // our output folder
 endpoint.setFile(new File("target"));
 // and the option not to append
 endpoint.setAppend(false);

 // then we add the endpoint just in java code just as the spring XML, we register it with the "backup"
id.
 context.addSingletonEndpoint("backup", endpoint);

 // finally we need to start the context so Camel is ready to rock
 context.start();
 }

 @Override
 protected void tearDown() throws Exception {
 super.tearDown();
 // and we are nice boys so we stop it to allow resources to clean up
 context.stop();
 }

So now we are ready to set the ProducerTemplate on our service, and we get a hold of that baby from the CamelContext as:

 public void testIncident() {
 ReportIncidentService service = new ReportIncidentService();

 // get a producer template from the camel context
 ProducerTemplate template = context.createProducerTemplate();
 // inject it on our service using the setter
 service.setTemplate(template);

 InputReportIncident input = createDummyIncident();
 OutputReportIncident output = service.reportIncident(input);
 assertEquals("OK", output.getCode());
 }

And this time when we run the unit test its a success:

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

We would like to test that the file exists so we add these two lines to our test method:

 // should generate a file also
 File file = new File("target/" + input.getIncidentId() + ".txt");
 assertTrue("File should exists", file.exists());

Smarter Unit Testing with Spring

The unit test above requires us to assemble the Camel pieces manually in java code. What if we would like our unit test to use our spring configuration file
 where we already have setup the endpoint. And of course we would like to test using this configuration file as this is the real axis-example-context.xml

file we will use. Well hey presto the xml file is a spring ApplicationContext file and spring is able to load it, so we go the spring path for unit testing. First we
add the spring-test jar to our maven dependency:

 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <scope>test</scope>
 </dependency>

And then we refactor our unit test to be a standard spring unit class. What we need to do is to extend instead AbstractJUnit38SpringContextTests
of in our unit test. Since Spring 2.5 embraces annotations we will use one as well to instruct what our xml configuration file is located:TestCase

@ContextConfiguration(locations = "classpath:axis-example-context.xml")
public class ReportIncidentServiceTest extends AbstractJUnit38SpringContextTests {

What we must remember to add is the prefix as our xml file is located in . If we omit the prefix then Spring will by classpath: src/main/resources
default try to locate the xml file in the current package and that is org.apache.camel.example.axis. If the xml file is located outside the classpath you can
use file: prefix instead. So with these two modifications we can get rid of all the setup and teardown code we had before and now we will test our real
configuration.

The last change is to get hold of the producer template and now we can just refer to the bean id it has in the spring xml file:

 <!-- producer template exposed with this id -->
 <camel:template id="camelTemplate"/>

So we get hold of it by just getting it from the spring ApplicationContext as all spring users is used to do:

 // get a producer template from the the spring context
 ProducerTemplate template = (ProducerTemplate) applicationContext.getBean("camelTemplate");
 // inject it on our service using the setter
 service.setTemplate(template);

Now our unit test is much better, and a real power of Camel is that is fits nicely with Spring and you can use standard Spring'ish unit test to test your
Camel applications as well.

Unit Test calling WebService

What if you would like to execute a unit test where you send a webservice request to the how do we unit test this one? Well AxisReportIncidentService
first of all the code is merely just a delegate to our real service that we have just tested, but nevertheless its a good question and we would like to know
how. Well the answer is that we can exploit that fact that Jetty is also a slim web container that can be embedded anywhere just as Camel can. So we add
this to our pom.xml:

 <dependency>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>jetty</artifactId>
 <version>${jetty-version}</version>
 <scope>test</scope>
 </dependency>

Then we can create a new class to unit test with Jetty. The code to setup Jetty is shown below with code comments:AxisReportIncidentServiceTest

public class AxisReportIncidentServiceTest extends TestCase {

 private Server server;

 private void startJetty() throws Exception {
 // create an embedded Jetty server
 server = new Server();

 // add a listener on port 8080 on localhost (127.0.0.1)
 Connector connector = new SelectChannelConnector();
 connector.setPort(8080);
 connector.setHost("127.0.0.1");
 server.addConnector(connector);

 // add our web context path
 WebAppContext wac = new WebAppContext();
 wac.setContextPath("/unittest");
 // set the location of the exploded webapp where WEB-INF is located
 // this is a nice feature of Jetty where we can point to src/main/webapp
 wac.setWar("./src/main/webapp");
 server.setHandler(wac);

 // then start Jetty
 server.setStopAtShutdown(true);
 server.start();
 }

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 startJetty();
 }

 @Override
 protected void tearDown() throws Exception {
 super.tearDown();
 server.stop();
 }

}

Now we just need to send the incident as a webservice request using Axis. So we add the following code:

 public void testReportIncidentWithAxis() throws Exception {
 // the url to the axis webservice exposed by jetty
 URL url = new URL("http://localhost:8080/unittest/services/ReportIncidentPort");

 // Axis stuff to get the port where we can send the webservice request
 ReportIncidentService_ServiceLocator locator = new ReportIncidentService_ServiceLocator();
 ReportIncidentService_PortType port = locator.getReportIncidentPort(url);

 // create input to send
 InputReportIncident input = createDummyIncident();
 // send the webservice and get the response
 OutputReportIncident output = port.reportIncident(input);
 assertEquals("OK", output.getCode());

 // should generate a file also
 File file = new File("target/" + input.getIncidentId() + ".txt");
 assertTrue("File should exists", file.exists());
 }

 protected InputReportIncident createDummyIncident() {
 InputReportIncident input = new InputReportIncident();
 input.setEmail("davsclaus@apache.org");
 input.setIncidentId("12345678");
 input.setIncidentDate("2008-07-13");
 input.setPhone("+45 2962 7576");
 input.setSummary("Failed operation");
 input.setDetails("The wrong foot was operated.");
 input.setFamilyName("Ibsen");
 input.setGivenName("Claus");
 return input;
 }

And now we have an unittest that sends a webservice request using good old Axis.

Annotations

Both Camel and Spring has annotations that can be used to configure and wire trivial settings more elegantly. Camel has the endpoint annotation @Endpoi
 that is just what we need. With this annotation we can inject the endpoint into our service. The annotation takes either a name or uri ntInjected

parameter. The name is the bean id in the . The uri is the URI configuration for the endpoint. Using this you can actually inject an endpoint that you Registry
have not defined in the camel context. As we have defined our endpoint with the id we use the name parameter.backup

 @EndpointInject(name = "backup")
 private ProducerTemplate template;

Camel is smart as supports different kinds of object types. We like the ProducerTemplate so we just keep it as it is. @EndpointInjected
Since we use annotations on the field directly we do not need to set the property in the spring xml file so we change our service bean:

 <bean id="incidentservice" class="org.apache.camel.example.axis.ReportIncidentService"/>

Running the unit test with reveals that it works nicely.mvn test

And since we use the that refers to the endpoint with the id backup directly we can loose the template tag in the xml, so its shorter:@EndpointInjected

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

 <bean id="incidentservice" class="org.apache.camel.example.axis.ReportIncidentService"/>

 <camel:camelContext id="camelContext">
 <!-- producer template exposed with this id -->
 <camel:template id="camelTemplate"/>

 <!-- endpoint named backup that is configued as a file component -->
 <camel:endpoint id="backup" uri="file://target?append=false"/>

 </camel:camelContext>

And the final touch we can do is that since the endpoint is injected with concrete endpoint to use we can remove the name parameter when we "backup"
send the message. So we change from:

 // send the data to the endpoint and the header contains what filename it should be stored as
 template.sendBodyAndHeader("backup", data, "org.apache.camel.file.name", filename);

To without the name:

 // send the data to the endpoint and the header contains what filename it should be stored as
 template.sendBodyAndHeader(data, "org.apache.camel.file.name", filename);

Then we avoid to duplicate the name and if we rename the endpoint name then we don't forget to change it in the code also.

The End

This tutorial hasn't really touched the one of the key concept of Camel as a powerful routing and mediation framework. But we wanted to demonstrate its
flexibility and that it integrates well with even older frameworks such as Apache Axis 1.4.

Check out the other tutorials on Camel and the other examples.

Note that the code shown here also applies to Camel 1.4 so actually you can get started right away with the released version of Camel. As this time of
writing Camel 1.5 is work in progress.

See Also

Tutorials
Examples

Tutorial on using Camel in a Web Application

Camel has been designed to work great with the framework; so if you are already a Spring user you can think of Camel as just a framework for Spring
adding to your Spring XML files.

So you can follow the usual Spring approach to working with web applications; namely to add the standard Spring hook to load a /WEB-INF
 file. In that file you can include your usual Camel XML configuration./applicationContext.xml

Step1: Edit your web.xml

To enable spring add a context loader listener to your file/WEB-INF/web.xml

https://cwiki.apache.org/confluence/display/CAMEL/Tutorials
https://cwiki.apache.org/confluence/display/CAMEL/Examples
https://cwiki.apache.org/confluence/display/CAMEL/Spring

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.
xsd"
 version="2.5">

 <listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
 </listener>

</web-app>

This will cause Spring to boot up and look for the file./WEB-INF/applicationContext.xml

Step 2: Create a /WEB-INF/applicationContext.xml file

Now you just need to create your Spring XML file and add your camel routes or configuration.

For example

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-2.5.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:foo"/>
 <to uri="mock:results"/>
 </route>
 </camelContext>

</beans>

Then boot up your web application and you're good to go!

Hints and Tips

If you use to build your application your directory tree will look like this...Maven

src/main/webapp/WEB-INF
 web.xml
 applicationContext.xml

You should update your Maven pom.xml to enable WAR packaging/naming like this...

http://maven.apache.org/

<project>
 ...
 <packaging>war</packaging>
 ...
 <build>
 <finalName>[desired WAR file name]</finalName>
 ...
 </build>

To enable more rapid development we highly recommend the .jetty:run maven plugin

Please refer to the - but briefly if you add the following to your pom.xmlhelp for more information on using jetty:run

 <build>
 <plugins>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 <configuration>
 <webAppConfig>
 <contextPath>/</contextPath>
 </webAppConfig>
 <scanIntervalSeconds>10</scanIntervalSeconds>
 </configuration>
 </plugin>
 </plugins>
 </build>

Then you can run your web application as follows

mvn jetty:run

Then Jetty will also monitor your target/classes directory and your src/main/webapp directory so that if you modify your spring XML, your web.xml or your
java code the web application will be restarted, re-creating your Camel routes.

If your unit tests take a while to run, you could miss them out when running your web application via

mvn -Dtest=false jetty:run

Tutorial Business Partners

Background and Introduction

Business Background

So there's a company, which we'll call Acme. Acme sells widgets, in a fairly unusual way. Their customers are responsible for telling Acme what they
purchased. The customer enters into their own systems (ERP or whatever) which widgets they bought from Acme. Then at some point, their systems emit
a record of the sale which needs to go to Acme so Acme can bill them for it. Obviously, everyone wants this to be as automated as possible, so there
needs to be integration between the customer's system and Acme.

Sadly, Acme's sales people are, technically speaking, doormats. They tell all their prospects, "you can send us the data in whatever format, using whatever
protocols, whatever. You just can't change once it's up and running."

The result is pretty much what you'd expect. Taking a random sample of 3 customers:

Under Construction

This tutorial is a work in progress.

http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin

Customer 1: XML over FTP
Customer 2: CSV over HTTP
Customer 3: Excel via e-mail

Now on the Acme side, all this has to be converted to a canonical XML format and submitted to the Acme accounting system via JMS. Then the Acme
accounting system does its stuff and sends an XML reply via JMS, with a summary of what it processed (e.g. 3 line items accepted, line item #2 in error,
total invoice $123.45). Finally, that data needs to be formatted into an e-mail, and sent to a contact at the customer in question ("Dear Joyce, we received
an invoice on 1/2/08. We accepted 3 line items totaling $123.45, though there was an error with line items #2 [invalid quantity ordered]. Thank you for your
business. Love, Acme.").

So it turns out Camel can handle all this:

Listen for HTTP, e-mail, and FTP files
Grab attachments from the e-mail messages
Convert XML, XLS, and CSV files to a canonical XML format
read and write JMS messages
route based on company ID
format e-mails using Velocity templates
send outgoing e-mail messages

Tutorial Background

This tutorial will cover all that, plus setting up tests along the way.

Before starting, you should be familiar with:

Camel concepts including the , , , and CamelContext Routes Components and Endpoints Enterprise Integration Patterns
Configuring Camel with the or XML Java DSL

You'll learn:

How to set up a Maven build for a Camel project
How to transform XML, CSV, and Excel data into a standard XML format with Camel

How to write POJOs (Plain Old Java Objects), Velocity templates, and XSLT stylesheets that are invoked by Camel routes for message
transformation

How to configure simple and complex Routes in Camel, using either the XML or the Java DSL format
How to set up unit tests that load a Camel configuration and test Camel routes
How to use Camel's Data Formats to automatically convert data between Java objects and XML, CSV files, etc.
How to send and receive e-mail from Camel
How to send and receive JMS messages from Camel
How to use Enterprise Integration Patterns including Message Router and Pipes and Filters

How to use various languages to express content-based routing rules in Camel
How to deal with Camel messages, headers, and attachments

You may choose to treat this as a hands-on tutorial, and work through building the code and configuration files yourself. Each of the sections gives detailed
descriptions of the steps that need to be taken to get the components and routes working in Camel, and takes you through tests to make sure they are
working as expected.

But each section also links to working copies of the source and configuration files, so if you don't want the hands-on approach, you can simply review and
/or download the finished files.

High-Level Diagram

Here's more or less what the integration process looks like.

First, the input from the customers to Acme:

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Routes
https://cwiki.apache.org/confluence/display/CAMEL/Components
https://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
https://cwiki.apache.org/confluence/display/CAMEL/Spring#Spring-UsingSpringtoconfiguretheCamelContext
https://cwiki.apache.org/confluence/display/CAMEL/DSL

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.
11.
12.

13.
14.
15.

And then, the output from Acme to the customers:

Tutorial Tasks

To get through this scenario, we're going to break it down into smaller pieces, implement and test those, and then try to assemble the big scenario and test
that.

Here's what we'll try to accomplish:

Create a Maven build for the project
Get sample files for the customer Excel, CSV, and XML input
Get a sample file for the canonical XML format that Acme's accounting system uses
Create an XSD for the canonical XML format
Create JAXB POJOs corresponding to the canonical XSD
Create an XSLT stylesheet to convert the Customer 1 (XML over FTP) messages to the canonical format
Create a unit test to ensure that a simple Camel route invoking the XSLT stylesheet works
Create a POJO that converts a to the above JAXB POJOsList<List<String>>

Note that Camel can automatically convert CSV input to a List of Lists of Strings representing the rows and columns of the CSV, so we'll
use this POJO to handle Customer 2 (CSV over HTTP)

Create a unit test to ensure that a simple Camel route invoking the CSV processing works
Create a POJO that converts a Customer 3 Excel file to the above JAXB POJOs (using POI to read Excel)
Create a unit test to ensure that a simple Camel route invoking the Excel processing works
Create a POJO that reads an input message, takes an attachment off the message, and replaces the body of the message with the attachment

This is assuming for Customer 3 (Excel over e-mail) that the e-mail contains a single Excel file as an attachment, and the actual e-mail
body is throwaway

Build a set of Camel routes to handle the entire input (Customer -> Acme) side of the scenario.
Build unit tests for the Camel input.
TODO: Tasks for the output (Acme -> Customer) side of the scenario

Let's Get Started!

Step 1: Initial Maven build

We'll use Maven for this project as there will eventually be quite a few dependencies and it's nice to have Maven handle them for us. You should have a
current version of Maven (e.g. 2.0.9) installed.

You can start with a pretty empty project directory and a Maven POM file, or use a simple JAR archetype to create one.

Here's a sample POM. We've added a dependency on , and set the compile version to 1.5 (so we can use annotations):camel-core

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.apache.camel.tutorial</groupId>
 <artifactId>business-partners</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>Camel Business Partners Tutorial</name>
 <dependencies>
 <dependency>
 <artifactId>camel-core</artifactId>
 <groupId>org.apache.camel</groupId>
 <version>1.4.0</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Step 2: Get Sample Files

You can make up your own if you like, but here are the "off the shelf" ones. You can save yourself some time by downloading these to src/test
 in your Maven project./resources

Customer 1 (XML): input-customer1.xml
Customer 2 (CSV): input-customer2.csv
Customer 3 (Excel): input-customer3.xls
Canonical Acme XML Request: canonical-acme-request.xml
Canonical Acme XML Response: TODO

If you look at these files, you'll see that the different input formats use different field names and/or ordering, because of course the sales guys were totally
OK with that. Sigh.

Step 3: XSD and JAXB Beans for the Canonical XML Format

Here's the sample of the canonical XML file:

<?xml version="1.0" encoding="UTF-8"?>
<invoice xmlns="http://activemq.apache.org/camel/tutorial/partners/invoice">
 <partner-id>2</partner-id>
 <date-received>9/12/2008</date-received>
 <line-item>
 <product-id>134</product-id>
 <description>A widget</description>
 <quantity>3</quantity>
 <item-price>10.45</item-price>
 <order-date>6/5/2008</order-date>
 </line-item>
 <!-- // more line-item elements here -->
 <order-total>218.82</order-total>
</invoice>

If you're ambitions, you can write your own XSD (XML Schema) for files that look like this, and save it to .src/main/xsd

https://cwiki.apache.org/confluence/download/attachments/97175/input-customer1.xml?version=1&modificationDate=1221304897000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/input-customer2.csv?version=1&modificationDate=1221304897000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/input-customer3.xls?version=1&modificationDate=1221304897000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/canonical-acme-request.xml?version=1&modificationDate=1221304897000&api=v2

1.

Solution: If not, you can , and save that to save it to .download mine src/main/xsd

Generating JAXB Beans

Down the road we'll want to deal with the XML as Java POJOs. We'll take a moment now to set up those XML binding POJOs. So we'll update the Maven
POM to generate JAXB beans from the XSD file.

We need a dependency:

<dependency>
 <artifactId>camel-jaxb</artifactId>
 <groupId>org.apache.camel</groupId>
 <version>1.4.0</version>
</dependency>

And a plugin configured:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>jaxb2-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>xjc</goal>
 </goals>
 </execution>
 </executions>
</plugin>

That should do it (it automatically looks for XML Schemas in to generate beans for). Run and it should emit the beans into src/main/xsd mvn install tar
. Your IDE should see them there, though you may need to update the project to reflect the new settings in the Maven get/generated-sources/jaxb

POM.

Step 4: Initial Work on Customer 1 Input (XML over FTP)

To get a start on Customer 1, we'll create an XSLT template to convert the Customer 1 sample file into the canonical XML format, write a small Camel
route to test it, and build that into a unit test. If we get through this, we can be pretty sure that the XSLT template is valid and can be run safely in Camel.

Create an XSLT template

Start with the . You want to create an XSLT template to generate XML like the canonical XML sample above – an Customer 1 sample input invoice
element with elements (one per item in the original XML document). If you're especially clever, you can populate the current date and order line-item
total elements too.

Solution: My isn't that smart, but it'll get you going if you don't want to write one of your own.sample XSLT template

Create a unit test

Here's where we get to some meaty Camel work. We need to:

Set up a unit test
That loads a Camel configuration
That has a route invoking our XSLT
Where the test sends a message to the route
And ensures that some XML comes out the end of the route

The easiest way to do this is to set up a Spring context that defines the Camel stuff, and then use a base unit test class from Spring that knows how to
load a Spring context to run tests against. So, the procedure is:

Set Up a Skeletal Camel/Spring Unit Test

Add dependencies on Camel-Spring, and the Spring test JAR (which will automatically bring in JUnit 3.8.x) to your POM:

https://cwiki.apache.org/confluence/download/attachments/97175/canonical-acme-request.xsd?version=1&modificationDate=1221555594000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/input-customer1.xml?version=1&modificationDate=1221304897000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/XMLConverter.xsl?version=1&modificationDate=1221315500000&api=v2

1.

2.
3.
4.
5.

6.

7.

8.
9.

1.
2.
3.

a.
b.

<dependency>
 <artifactId>camel-spring</artifactId>
 <groupId>org.apache.camel</groupId>
 <version>1.4.0</version>
</dependency>
<dependency>
 <artifactId>spring-test</artifactId>
 <groupId>org.springframework</groupId>
 <version>2.5.5</version>
 <scope>test</scope>
</dependency>

Create a new unit test class in , perhaps called src/test/java/your-package-here XMLInputTest.java
Make the test extend Spring's class, so it can load a Spring context for the testAbstractJUnit38SpringContextTests
Create a Spring context configuration file in , perhaps called src/test/resources XMLInputTest-context.xml
In the unit test class, use the class-level annotation to indicate that a Spring context should be loaded@ContextConfiguration

By default, this looks for a Context configuration file called in a subdirectory corresponding to the TestClassName-context.xml
package of the test class. For instance, if your test class was , it would look for org.apache.camel.tutorial.XMLInputTest org
/apache/camel/tutorial/XMLInputTest-context.xml
To override this default, use the attribute on the @ContextConfiguration annotation to provide specific context file locations locations
(starting each path with a / if you don't want it to be relative to the package directory). My solution does this so I can put the context file
directly in instead of in a package directory under there.src/test/resources

Add a instance variable to the test class, with the annotation. That way Spring will automatically pull the CamelContext @Autowired
CamelContext out of the Spring context and inject it into our test class.
Add a instance variable and a method that instantiates it from the CamelContext. We'll use the ProducerTemplate later ProducerTemplate setUp
to send messages to the route.

protected ProducerTemplate<Exchange> template;

protected void setUp() throws Exception {
 super.setUp();
 template = camelContext.createProducerTemplate();
}

Put in an empty test method just for the moment (so when we run this we can see that "1 test succeeded")
Add the Spring element (including the) with an empty element to the Spring context, like this:<beans> Camel Namespace <camelContext>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://activemq.apache.org/camel/schema/spring
 http://activemq.apache.org/camel/schema/spring/camel-spring-1.4.0.xsd">

 <camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
 </camelContext>
</beans>

Test it by running and make sure there are no build errors. So far it doesn't test much; just that your project and test and source files are all mvn install
organized correctly, and the one empty test method completes successfully.

Solution: Your test class might look something like this:

src/test/java/org/apache/camel/tutorial/XMLInputTest.java
src/test/resources/XMLInputTest-context.xml (same as just above)

Flesh Out the Unit Test

So now we're going to write a Camel route that applies the XSLT to the sample Customer 1 input file, and makes sure that some XML output comes out:

Save the file to input-customer1.xml src/test/resources
Save your XSLT file (created in the previous step) to src/main/resources
Write a Camel Route, either right in the Spring XML, or using the Java DSL (in another class under somewhere). This route src/test/java
should use the integration pattern to:Pipes and Filters

Start from the endpoint (which lets the test conveniently pass messages into the route)direct:start

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/junit38/AbstractJUnit38SpringContextTests.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/ContextConfiguration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/Autowired.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-metadata
http://activemq.apache.org/camel/xml-reference.html
https://cwiki.apache.org/confluence/display/CAMEL/Spring#Spring-UsingSpringtoconfiguretheCamelContext
https://cwiki.apache.org/confluence/download/attachments/97175/empty-XMLInputTest.java?version=3&modificationDate=1221634419000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/input-customer1.xml?version=1&modificationDate=1221304897000&api=v2
https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Direct

3.

b.
c.

4.
a.

b.
c.

d.

e.

f.

5.

1.
2.

3.
a.
b.
c.

d.

Call the endpoint (to transform the message with the specified XSLT template)xslt:YourXSLTFile.xsl
Send the result to the endpoint (which lets the test verify the route output)mock:finish

Add a test method to the unit test class that:
Get a reference to the Mock endpoint using code like this:mock:finish

MockEndpoint finish = MockEndpoint.resolve(camelContext, "mock:finish");

Set the on that endpoint to 1expectedMessageCount
Get a reference to the Customer 1 input file, using code like this:

InputStream in = XMLInputTest.class.getResourceAsStream("/input-partner1.xml");
assertNotNull(in);

Send that InputStream as a message to the endpoint, using code like this:direct:start

 template.sendBody("direct:start", in);

Note that we can send the sample file body in several formats (File, InputStream, String, etc.) but in this case an InputStream is pretty
convenient.
Ensure that the message made it through the route to the final endpoint, by testing all configured Mock endpoints :like this

MockEndpoint.assertIsSatisfied(camelContext);

If you like, inspect the final message body using some code like .finish.getExchanges().get(0).getIn().getBody()
If you do this, you'll need to know what format that body is – String, byte array, InputStream, etc.

Run your test with and make sure the build completes successfully.mvn install

Solution: Your finished test might look something like this:

src/test/java/org/apache/camel/tutorial/XMLInputTest.java
For XML Configuration:

src/test/resources/XMLInputTest-context.xml
Or, for Java DSL Configuration:

src/test/resources/XMLInputTest-dsl-context.xml
src/test/java/org/apache/camel/tutorial/routes/XMLInputTestRoute.java

Step 5: Initial Work on Customer 2 Input (CSV over HTTP)

To get a start on Customer 2, we'll create a POJO to convert the Customer 2 sample CSV data into the JAXB POJOs representing the canonical XML
format, write a small Camel route to test it, and build that into a unit test. If we get through this, we can be pretty sure that the CSV conversion and JAXB
handling is valid and can be run safely in Camel.

Create a CSV-handling POJO

To begin with, in Camel. Camel can convert a CSV file to a List (representing rows in the CSV) of Lists (representing cells in CSV is a known data format
the row) of Strings (the data for each cell). That means our POJO can just assume the data coming in is of type , and we can List<List<String>>
declare a method with that as the argument.

Looking at the JAXB code in , it looks like an object represents the whole document, with a nested list of target/generated-sources/jaxb Invoice
LineItemType objects for the line items. Therefore our POJO method will return an (a document in the canonical XML format).Invoice

So to implement the CSV-to-JAXB POJO, we need to do something like this:

Create a new class under , perhaps called .src/main/java CSVConverterBean
Add a method, with one argument of type and the return type List<List<String>> Invoice

You may the argument with to specifically designate it as the body of the incoming messageannotate @Body
In the method, the logic should look roughly like this:

Create a new , using the method on the generated classInvoice ObjectFactory
Loop through all the rows in the incoming CSV (the outer)List
Skip the first row, which contains headers (column names)

Test Base Class

Once your test class is working, you might want to extract things like the @Autowired CamelContext, the ProducerTemplate, and the setUp
method to a custom base class that you extend with your other tests.

https://cwiki.apache.org/confluence/display/CAMEL/XSLT
https://cwiki.apache.org/confluence/display/CAMEL/Mock
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#setExpectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTest.java?version=3&modificationDate=1221637330000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTest-context.xml?version=1&modificationDate=1221560232000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTest-dsl-context.xml?version=1&modificationDate=1221627131000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/XMLInputTestRoute.java?version=1&modificationDate=1221627131000&api=v2
https://cwiki.apache.org/confluence/display/CAMEL/CSV
https://cwiki.apache.org/confluence/display/CAMEL/Bean#Bean-UsingAnnotationstobindparameterstotheExchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html

3.

d.
i.
ii.

iii.
e.
f.
g.

1.

For the other rows:
Create a new (using the again)LineItemType ObjectFactory
Pick out all the cell values (the Strings in the inner) and put them into the correct fields of the List LineItemType

Not all of the values will actually go into the line item in this example
You may hardcode the column ordering based on the sample data file, or else try to read it dynamically from the
headers in the first line
Note that you'll need to use a JAXB to create the values that JAXB DatatypeFactory XMLGregorianCalendar
uses for the fields in the XML – which probably means using a to parse the date and date SimpleDateFormat
setting that date on a GregorianCalendar

Add the line item to the invoice
Populate the partner ID, date of receipt, and order total on the Invoice
Throw any exceptions out of the method, so Camel knows something went wrong
Return the finished Invoice

Solution: Here's an example of what the might look like.CSVConverterBean

Create a unit test

Start with a simple test class and test Spring context like last time, perhaps based on the name :CSVInputTest

CSVInputTest.java

/**
 * A test class the ensure we can convert Partner 2 CSV input files to the
 * canonical XML output format, using JAXB POJOs.
 */
@ContextConfiguration(locations = "/CSVInputTest-context.xml")
public class CSVInputTest extends AbstractJUnit38SpringContextTests {
 @Autowired
 protected CamelContext camelContext;
 protected ProducerTemplate<Exchange> template;

 protected void setUp() throws Exception {
 super.setUp();
 template = camelContext.createProducerTemplate();
 }

 public void testCSVConversion() {
 // TODO
 }
}

CSVInputTest-context.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://activemq.apache.org/camel/schema/spring
 http://activemq.apache.org/camel/schema/spring/camel-spring-1.4.0.xsd">

 <camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
 <!-- TODO -->
 </camelContext>
</beans>

Now the meaty part is to flesh out the test class and write the Camel routes.

Update the Maven POM to include support:CSV Data Format

https://cwiki.apache.org/confluence/download/attachments/97175/CSVConverterBean.java?version=1&modificationDate=1221634021000&api=v2
https://cwiki.apache.org/confluence/display/CAMEL/CSV
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format

1.

2.

a.

b.

c.
d.
e.

3.
a.
b.
c.

4.

1.

2.
3.

4.
a.
b.
c.
d.

e.

<dependency>
 <artifactId>camel-csv</artifactId>
 <groupId>org.apache.camel</groupId>
 <version>1.4.0</version>
</dependency>

Write the routes (right in the Spring XML context, or using the Java DSL) for the CSV conversion process, again using the Pipes and Filters
pattern:

Start from the endpoint (which lets the test conveniently pass messages into the route). We'll name this differently than direct:CSVstart
the starting point for the previous test, in case you use the Java DSL and put all your routes in the same package (which would mean
that each test would load the DSL routes for several tests.)
This time, there's a little preparation to be done. Camel doesn't know that the initial input is a CSV, so it won't be able to convert it to the
expected without a little hint. For that, we need an transformation in the route. The List<List<String>> unmarshal unmarshal
method (in the DSL) or element (in the XML) takes a child indicating the format to unmarshal; in this case that should be .csv
Next invoke the POJO to transform the message with a endpointbean:CSVConverter
As before, send the result to the endpoint (which lets the test verify the route output)mock:finish
Finally, we need a Spring element in the Spring context XML file (but outside the element) to define the <bean> <camelContext>
Spring bean that our route invokes. This Spring bean should have a attribute that matches the name used in the endpoint (name bean CS

 in the example above), and a attribute that points to the CSV-to-JAXB POJO class you wrote above (such as, VConverter class org.
). When Spring is in the picture, any endpoints look up Spring beans with the apache.camel.tutorial.CSVConverterBean bean

specified name.
Write a test method in the test class, which should look very similar to the previous test class:

Get the MockEndpoint for the final endpoint, and tell it to expect one message
Load the Partner 2 sample CSV file from the ClassPath, and send it as the body of a message to the starting endpoint
Verify that the final MockEndpoint is satisfied (that is, it received one message) and examine the message body if you like

Note that we didn't the JAXB POJOs to XML in this test, so the final message should contain an as the body. marshal Invoice
You could write a simple line of code to get the Exchange (and Message) from the MockEndpoint to confirm that.

Run this new test with and make sure it passes and the build completes successfully.mvn install

Solution: Your finished test might look something like this:

src/test/java/org/apache/camel/tutorial/CSVInputTest.java
For XML Configuration:

src/test/resources/CSVInputTest-context.xml
Or, for Java DSL Configuration:

src/test/resources/CSVInputTest-dsl-context.xml
src/test/java/org/apache/camel/tutorial/routes/CSVInputTestRoute.java

Step 6: Initial Work on Customer 3 Input (Excel over e-mail)

To get a start on Customer 3, we'll create a POJO to convert the Customer 3 sample Excel data into the JAXB POJOs representing the canonical XML
format, write a small Camel route to test it, and build that into a unit test. If we get through this, we can be pretty sure that the Excel conversion and JAXB
handling is valid and can be run safely in Camel.

Create an Excel-handling POJO

Camel does not have a data format handler for Excel by default. We have two options – create an Excel (so Camel can convert Excel DataFormat
spreadsheets to something like the CSV automatically), or create a POJO that can translate Excel data manually. For now, the List<List<String>>
second approach is easier (if we go the route, we need code to both read and write Excel files, whereas otherwise read-only will do).DataFormat

So, we need a POJO with a method that takes something like an or as an argument, and returns in as before. The InputStream byte[] Invoice
process should look something like this:

Update the Maven POM to include support:POI

<dependency>
 <artifactId>poi</artifactId>
 <groupId>org.apache.poi</groupId>
 <version>3.1-FINAL</version>
</dependency>

Create a new class under , perhaps called .src/main/java ExcelConverterBean
Add a method, with one argument of type and the return type InputStream Invoice

You may the argument with to specifically designate it as the body of the incoming messageannotate @Body
In the method, the logic should look roughly like this:

Create a new , using the method on the generated classInvoice ObjectFactory
Create a new from the , and get the from itHSSFWorkbook InputStream first sheet
Loop through in the sheetall the rows
Skip the first row, which contains headers (column names)

https://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
https://cwiki.apache.org/confluence/display/CAMEL/Direct
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format#DataFormat-Unmarshalling
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Mock
https://cwiki.apache.org/confluence/display/CAMEL/Data+Format#DataFormat-Marshalling
https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTest.java?version=2&modificationDate=1221678956000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTest-context.xml?version=2&modificationDate=1221678956000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTest-dsl-context.xml?version=1&modificationDate=1221678956000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/CSVInputTestRoute.java?version=2&modificationDate=1221679042000&api=v2
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://poi.apache.org/
https://cwiki.apache.org/confluence/display/CAMEL/Bean#Bean-UsingAnnotationstobindparameterstotheExchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html#getSheetAt(int)
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFSheet.html#rowIterator()

4.

e.
i.
ii.

iii.
f.
g.
h.

1.
2.

3.

1.
2.
3.

For the other rows:
Create a new (using the again)LineItemType ObjectFactory
Pick out and put them into the correct fields of the (you'll need some data type conversion all the cell values LineItemType
logic)

Not all of the values will actually go into the line item in this example
You may hardcode the column ordering based on the sample data file, or else try to read it dynamically from the
headers in the first line
Note that you'll need to use a JAXB to create the values that JAXB DatatypeFactory XMLGregorianCalendar
uses for the fields in the XML – which probably means setting the on a date date from a date cell GregorianCalend
ar

Add the line item to the invoice
Populate the partner ID, date of receipt, and order total on the Invoice
Throw any exceptions out of the method, so Camel knows something went wrong
Return the finished Invoice

Solution: Here's an example of what the might look like.ExcelConverterBean

Create a unit test

The unit tests should be pretty familiar now. The test class and context for the Excel bean should be quite similar to the CSV bean.

Create the basic test class and corresponding Spring Context XML configuration file
The XML config should look a lot like the CSV test, except:

Remember to use a different start endpoint name if you're using the Java DSL and not use separate packages per test
You don't need the step since the Excel POJO takes the raw from the source endpointunmarshal InputStream
You'll declare a and endpoint for the Excel bean prepared above instead of the CSV bean<bean>

The test class should look a lot like the CSV test, except use the right input file name and start endpoint name.

Solution: Your finished test might look something like this:

src/test/java/org/apache/camel/tutorial/ExcelInputTest.java
For XML Configuration:

src/test/resources/ExcelInputTest-context.xml
Or, for Java DSL Configuration:

src/test/resources/ExcelInputTest-dsl-context.xml
src/test/java/org/apache/camel/tutorial/routes/ExcelInputTestRoute.java

Step 7: Put this all together into Camel routes for the Customer Input

With all the data type conversions working, the next step is to write the real routes that listen for HTTP, FTP, or e-mail input, and write the final XML output
to an ActiveMQ queue. Along the way these routes will use the data conversions we've developed above.

So we'll create 3 routes to start with, as shown in the diagram back at the beginning:

Accept XML orders over FTP from Customer 1 (we'll assume the FTP server dumps files in a local directory on the Camel machine)
Accept CSV orders over HTTP from Customer 2
Accept Excel orders via e-mail from Customer 3 (we'll assume the messages are sent to an account we can access via IMAP)

...

Step 8: Create a unit test for the Customer Input Routes

Logging

You may notice that your tests emit a lot less output all of a sudden. The dependency on POI brought in Log4J and configured commons-
logging to use it, so now we need a file to configure log output. You can use the attached one (snarfed from ActiveMQ) or write log4j.properties
your own; either way save it to to ensure you continue to see log output.src/main/resources

http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFRow.html#cellIterator()
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFCell.html#getDateCellValue()
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelConverterBean.java?version=1&modificationDate=1221702252000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTest.java?version=1&modificationDate=1221732213000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTest-context.xml?version=1&modificationDate=1221732213000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTest-dsl-context.xml?version=1&modificationDate=1221732432000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/ExcelInputTestRoute.java?version=1&modificationDate=1221732432000&api=v2
https://cwiki.apache.org/confluence/download/attachments/97175/log4j.properties?version=1&modificationDate=1221732568000&api=v2

	Book Tutorials

